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Abstract. We show how two fundamental sequential criteria for real func-
tions, namely the sequential criterion for continuity and the sequential criterion for
uniform continuity, are relaxed. Further, we derive a global continuity criterion, as an
immediate consequence of the relaxed sequential criterion for continuity, and a fun-
damental property of uniformly continuous functions, as an application of the relaxed
sequential criterion for uniform continuity.
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1. Introduction

The foundations of real analysis were laid in the nineteenth century by Bol-
zano, Cauchy, Weierstrass, Heine, Riemann and others. It was in that period that
fundamental concepts, such as the limit and the continuity of a real function, were
rigorously defined and the known ε-δ definitions were introduced [4, 6]. Then it
became known that each such ε-δ definition can be expressed as an equivalent se-
quential criterion in the sense that the ε-δ definition implies the sequential criterion
and the converse [1, 2, 3, 7, 8].

For instance, the ε-δ definition of limit of a real function at a cluster point of
its domain is equivalent1 to a sequential criterion, known as the sequential criterion
for limits, which expresses the function limit in terms of the limit of appropriately
chosen sequences of function values and thus it allows for the function limit to be
studied as a sequence limit. In this way, properties of function limits can be directly
derived from respective properties of sequence limits.

In this work, we focus on the sequential criteria for continuity and uniform
continuity, and we show how they can be relaxed, as a consequence of the presence

1It should be noted that Heine used this criterion as the (sequential) definition of limit of
a real function and although the ε-δ definition implies straightforwardly Heine’s definition, for
Heine’s definition to imply the ε-δ definition, the Axiom of Choice is needed (see [5, pp. 145–146],
where the necessity of the Axiom of Choice is demonstrated in the similar case of the sequential
criterion for continuity, which was used also by Heine as the (sequential) definition of continuity).
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of the universal quantifier in their statements. We also derive a global continu-
ity criterion, as an immediate consequence of the relaxed sequential criterion for
continuity of a real function on R, and a fundamental property of uniformly con-
tinuous functions, as an application of the relaxed sequential criterion for uniform
continuity.

Taking into account that the relevant discussion can be rarely seen in standard
analysis textbooks, the present work could be hopefully used to fill in this gap in
the literature.

In what follows, whenever the notation is not standard, we follow [2].

2. The sequential criterion for continuity

As a result of the ε-δ definition of continuity of a real function at a point of
its domain, the following sequential criterion holds [1, 2, 7].

Theorem 1 (Sequential criterion for continuity). Let f : A ⊆ R→ R
be a function and let x0 ∈ A. f is continuous at x0 if and only if for every sequence
(xn) in A, if (xn) converges to x0, then the sequence (f(xn)) of function values
converges to f(x0).

In order to relax the sequential criterion for continuity, we will prove the
following lemma.

Lemma 1. Let f : A ⊆ R→ R be a function and let x0 be a cluster point of A.
If for every sequence (xn) in A, (if (xn) converges to x0, then the sequence (f(xn))
converges), then (f(xn)) converges to f(x0).

Proof. We assume that for every sequence (xn) in A, if (xn) converges to x0,
then the sequence (f(xn)) converges.

First, we will show that all such sequences (f(xn)) converge to the same limit.
Aiming at a contradiction, we assume that this is not the case. Then there exist two
sequences (xn) and (yn) in A that both converge to x0 and the respective sequences
(f(xn)) and (f(yn)) converge, but to different limits.

Next, we consider the sequence (zn) defined by z2n−1 = xn and z2n = yn, for
all n ∈ N. Since both sequences (xn) and (yn) are in A, then, clearly, the sequence
(zn) is in A, too. Further, since both sequences (xn) and (yn) converge to x0, then
both subsequences (z2n−1) and (z2n) of (zn) converge to x0, and as a consequence,
the sequence (zn) itself converges to x0, too.

Then, by assumption, the sequence (f(zn)) converges and as a consequence,
the subsequences (f(z2n−1)) = (f(xn)) and (f(z2n)) = (f(yn)) of (f(zn)) also
converge and to the same limit as (f(zn)). Consequently, the sequences (f(xn))
and (f(yn)) converge to the same limit, which is a contradiction. This establishes
the statement that if for every sequence (xn) in A, (if (xn) converges to x0, then
the sequence (f(xn)) converges), then (f(xn)) always converges to the same limit.

Next, we will show, by direct proof, that the previous common limit is equal
to f(x0). To this end, we consider the sequence (xn) defined by xn = x0 for all
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n ∈ N. Since (xn) is a constant sequence with value x0, then it converges to x0.
Also, since x0 ∈ A, then (xn) is in A. Then, by the statement we have just proved,
the sequence (f(xn)) converges to the previous common limit and since (f(xn)) is
a constant sequence with value f(x0), then it converges to f(x0), which is then the
previous common limit.

Theorem 2 (Relaxed sequential criterion for continuity). Let
f : A ⊆ R→ R be a function and let x0 ∈ A be a cluster point of A. f is continuous
at x0 if and only if for every sequence (xn) in A, if (xn) converges to x0, then the
sequence (f(xn)) converges.

Proof. (i) Let f be continuous at x0. Then, by the sequential criterion for
continuity, for every sequence (xn) in A, if (xn) converges to x0, then the sequence
(f(xn)) converges to f(x0); hence it converges.

(ii) We assume that for every sequence (xn) in A, if (xn) converges to x0, then
the sequence (f(xn)) converges. Then, by Lemma 1, (f(xn)) converges to f(x0)
and thus, by the sequential criterion for continuity, f is continuous at x0.

Remark 1. Invoking the Cauchy convergence criterion, we can replace the
phrase “the sequence (f(xn)) converges” in the statement of the previous relaxed
criterion with the phrase “the sequence (f(xn)) is a Cauchy sequence in R”.

The following global continuity criterion is an immediate consequence of the
relaxed sequential criterion for continuity.

Theorem 3 (Global continuity criterion). Let f : R → R be a func-
tion. f is continuous on R if and only if for every real sequence (xn), if (xn)
converges, then the sequence (f(xn)) converges. In other words, a real function
is continuous on R if and only if it sends real Cauchy sequences to real Cauchy
sequences.

Proof. (i) Let f be continuous on R and let (xn) be any convergent real
sequence. Then there exists x0 ∈ R such that (xn) converges to x0. Since f is
continuous on R and x0 ∈ R, then f is continuous at x0. Then, by the relaxed
sequential criterion for continuity, (f(xn)) converges.

(ii) We assume that for every real sequence (xn), if (xn) converges, then
(f(xn)) also converges. Let any x0 ∈ R be given and let (xn) be any real sequence
that converges to x0. Then, by assumption, the sequence (f(xn)) converges. Hence,
by the relaxed sequential criterion for continuity, f is continuous at x0, and since
x0 is any real number, then f is continuous on R.

3. The sequential criterion for uniform continuity

As a result of the ε-δ definition of uniform continuity of a real function on its
domain, the following sequential criterion holds [1, 2]2.

2In both references, the negation of the statement of the present criterion is proved and is
referred to as non-uniform continuity criterion.
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Theorem 4 (Sequential criterion for uniform continuity). Let
f : A ⊆ R → R be a function. f is uniformly continuous on A if and only if
for all sequences (xn) and (yn) in A, if the sequence (xn − yn) converges to zero,
then the sequence (f(xn)− f(yn)) also converges to zero.

As in the case of continuity, the ε-δ definition of uniform continuity implies
straightforwardly the sequential criterion for uniform continuity, but for the con-
verse to hold, the Axiom of Choice must be invoked.

In order to relax the sequential criterion for uniform continuity, we will prove
the following lemma.

Lemma 2. Let f : A ⊆ R → R be a function. If for all sequences (xn) and
(yn) in A, (if (xn − yn) converges to zero, then (f(xn) − f(yn)) converges), then
(f(xn)− f(yn)) converges to zero.

Proof. We assume that for all sequences (xn) and (yn) in A, if (xn − yn)
converges to zero, then (f(xn)− f(yn)) converges.

First, we will show that all such sequences (f(xn) − f(yn)) converge to the
same limit. Aiming at a contradiction, we assume that not all such sequences
(f(xn) − f(yn)) converge to the same limit. Then there exist sequences (xn) and
(yn), and (an) and (bn), all in A, such that (xn−yn) converges to zero and (an−bn)
converges to zero, and such that the sequences (f(xn)−f(yn)) and (f(an)−f(bn))
both converge, but to different limits.

Next, we consider the sequence (sn) defined by s2n−1 = xn and s2n = an,
for all n ∈ N, and the sequence (tn) defined by t2n−1 = yn and t2n = bn, for all
n ∈ N. Since the sequences (xn) and (an) are both in A, then the subsequences
(s2n−1) and (s2n) of (sn) are both in A; whence the sequence (sn) is in A, too.
In the same way, the sequence (tn) is in A, too. Further, we observe that, for
every n ∈ N, s2n−1 − t2n−1 = xn − yn, and since (xn − yn) converges to zero,
then the subsequence (s2n−1 − t2n−1) of (sn − tn) converges to zero. Similarly, for
every n ∈ N, s2n − t2n = an − bn, and since (an − bn) converges to zero, then
the subsequence (s2n − t2n) of (sn − tn) converges to zero. As a consequence, the
sequence (sn − tn) itself converges to zero, too.

We have thus shown that the sequences (sn) and (tn) are both in A, and
their difference (sn − tn) converges to zero. Then, by assumption, the sequence
(f(sn) − f(tn)) converges. Consequently, the subsequences (f(s2n−1) − f(t2n−1))
and (f(s2n) − f(t2n)) of (f(sn) − f(tn)) converge to the same limit; i.e., the se-
quences (f(xn)− f(yn)) and (f(an) − f(bn)) converge to the same limit, which is
a contradiction.

We have thus proved that if for all sequences (xn) and (yn) in A, (if (xn− yn)
converges to zero, then (f(xn)− f(yn)) converges), then all such sequences
(f(xn)− f(yn)) converge to the same limit.

Next, we will show, by direct proof, that the previous common limit is equal to
zero. To this end, we consider any sequence (xn) in A and we choose the sequence
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(yn) such that yn = xn for all n ∈ N. Then (yn) is in A, too, and since xn− yn = 0
for all n ∈ N, then the sequence (xn − yn) converges to zero. Further, for all
n ∈ N, f(xn)− f(yn) = 0; whence the sequence (f(xn)− f(yn)) also converges to
zero. Also, by the statement we have just proved, (f(xn)− f(yn)) converges to the
common limit we are looking for. Hence the common limit is zero.

Theorem 5 (Relaxed sequential criterion for uniform continu-
ity). Let f : A ⊆ R → R be a function. f is uniformly continuous on A if and
only if for all sequences (xn) and (yn) in A, if the sequence (xn − yn) converges to
zero, then the sequence (f(xn)− f(yn)) converges.

Proof. (i) Let f be uniformly continuous on A. Then, by the sequential
criterion for uniform continuity, for all sequences (xn) and (yn) in A, if the sequence
(xn − yn) converges to zero, then the sequence (f(xn) − f(yn)) also converges to
zero; hence it converges.

(ii) We assume that for all sequences (xn) and (yn) in A, if the sequence
(xn−yn) converges to zero, then the sequence (f(xn)−f(yn)) converges. Then, by
Lemma 2, (f(xn) − f(yn)) converges to zero and thus, by the sequential criterion
for uniform continuity, f is uniformly continuous on A.

Remark 2. Invoking the Cauchy convergence criterion, we can replace the
phrase “the sequence (f(xn)− f(yn)) converges” in the statement of the previous
relaxed criterion with the phrase “the sequence (f(xn)−f(yn)) is a Cauchy sequence
in R”.

As an application of the relaxed sequential criterion for uniform continuity,
we will show that a uniformly continuous function sends Cauchy sequences in its
domain to Cauchy sequences in R. To this end, we will need the following lemma.

Lemma 3. Let (xn) be a real sequence. If (xn) diverges, then there exist two
subsequences of (xn) whose difference also diverges.

Proof. Let (xn) diverge. Then (xn) may be bounded or unbounded. We will
distinguish the two cases.

(i) If (xn) is bounded, then, by the Bolzano-Weierstrass theorem, (xn) has a
convergent subsequence (xnk

). Clearly, (xn) is a subsequence of itself. Then the
sequence (xk − xnk

) is the difference of two subsequences of (xn) and diverges;
otherwise both sequences (xk − xnk

) and (xnk
) converge, and then the sequence(

(xk − xnk
) + xnk

)
= (xk) converges, which is a contradiction.

(ii) If (xn) is unbounded, then it is unbounded above or unbounded below.
Since the two cases are similar, we will examine only the first case. Since (xn) is
unbounded above, then there exists a term xn1 of (xn) such that xn1 > x1 + 1.

Since (xn) is unbounded above, then every tail of (xn) is unbounded above;
otherwise all but finitely many terms of (xn) are bounded above by some M ∈ R
and since there exists a maximum term in all those finitely many terms, then the
maximum of that maximum term and M is an upper bound of (xn), which is a
contradiction, since (xn) is unbounded above.
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Since the n1-tail of (xn) is unbounded above, then there exists a term xn2

of (xn), with n2 > n1, such that xn2 > x2 + 2. Continuing in the same way, we
construct a strictly increasing sequence (nk) of natural numbers such that xnk

>
xk + k, for all k ∈ N. Then (xnk

) is a subsequence of (xn) (which is a subsequence
of itself) and xnk

− xk > k for all k ∈ N; whence the difference (xnk
− xk) diverges

to positive infinity; thus it diverges.

Theorem 6. If a function f : A ⊆ R→ R is uniformly continuous on A, then
for every Cauchy sequence (xn) in A, (f(xn)) is a Cauchy sequence in R.

Proof. Let f be uniformly continuous on A and let (xn) be a Cauchy se-
quence in A. We consider the difference (f(xnk

)−f(xmk
)) of any two subsequences

(f(xnk
)) and (f(xmk

)) of the sequence (f(xn)). Clearly, (xnk
) and (xmk

) are two
subsequences of (xn). Since (xn) is a Cauchy sequence, then, by the Cauchy conver-
gence criterion, it converges in R (but not necessarily to a point of A). Hence, the
subsequences (xnk

) and (xmk
) of (xn) both converge and to the same limit as (xn).

Consequently, the difference (xnk
−xmk

) converges to zero. Also, since (xn) is in A,
then both (xnk

) and (xmk
) are in A. Then3, by the relaxed sequential criterion for

uniform continuity, (f(xnk
) − f(xmk

)) converges. Then, by the contrapositive of
Lemma 3, (f(xn)) converges and thus is a Cauchy sequence (in R), which is what
we wanted to prove.
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3Any subsequence of a given sequence is a sequence in its own right.


