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1. Introduction

The chessboard complex ∆m,n is an abstract simplicial complex defined on an
m × n chessboard with m columns and n rows (in the Cartesian notation or vice
versa in the matrix notation). This complex appears in many incarnations (as a
coset complex of the symmetric group, the matching complex in a complete bipar-
tite graph, the complex of all injective functions, etc.). Its topological properties
(high connectivity and the structure of an orientable pseudomanifold) have played
a fundamental role in the proof of some deep results of topological combinatorics
and discrete geometry (colored Tverberg theorems), see [21] for a survey.

Already in our first contact with chessboard complexes [22], almost thirty
years ago, we had to prove that the complex ∆m,n is (m−1)-dimensional, (m−2)-
connected simplicial complex for n ≥ 2m− 1.

A canonical way to prove that a simplicial complex is highly connected is to
show that it admits a shelling, a method which was not available at the time of
writing [22].

In this paper we review some of the more recent developments related to
chessboard complexes and their generalizations. Focusing on explicit shelling con-
structions (Section 5) we have opportunity to present some surprising and exciting
recent progress, in the necklace-splitting problem (Section 3) and in the problem
of envy-free division (Section 4).
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1.1. The chessboard complex ∆m,n

The vertices of ∆m,n are mn squares of the m × n chessboard and (k − 1)-
dimensional faces of ∆m,n are all configurations of k non-taking (non-attacking)
rooks, meaning that two rooks are not allowed to be in the same row or the same
column.

We label the squares of the m×n table by (i, j), where i represents the column
(numbered from left to the right) while j represents the row (numbered from top
to the bottom).

2. Shellability of simplicial complexes

A d-dimensional simplicial complex K is called pure if its maximal simplices
are all of the same dimension d. An ordering

(2.1) F1, F2, F3, . . . , Fk, . . .

of maximal simplices of a finite, pure d-dimensional simplicial complex K is called
a shelling if the intersection

Bk =
( k−1⋃

i=1

Fi

) ∩ Fk

is pure of dimension d− 1 for all k = 2, 3, · · · .
Exercise. An ordering (2.1) is a shelling if and only if for all i < k there

exist j < k and v ∈ Fk such that

Fi ∩ Fk ⊆ Fj ∩ Fk = Fk \ {v} .

In other words for each k > 1 and each i < k the (possibly empty) intersection
Fi ∩Fk is contained in some “full intersection” Fj ∩Fk, where j < k and dim (Fj ∩
Fk) = d− 1.

Fig. 1. A non-shelling of the annulus

Exercise. Why the ordering of triangles exhibited in Figure 1 is not a
shelling?

Exercise. A graph without loops and multiple edges, interpreted as a
1-dimensional simplicial complex, is shellable if and only if it is connected.
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Theorem 2.1. A shellable d-dimensional complex is contractible or homotopy
equivalent to a wedge of d-spheres

The case of graphs is elementary, however not without useful and amusing
observations. For illustration let Γ ⊆ Km,n be a subgraph of the complete bipartite
graph Km,n. We know that Γ is shellable if it is connected. However, is it always
possible to use a shelling on Km,n to obtain (by restriction) a shelling on the
subgraph Γ? The following example shows that this is not the case.

Each edge {(i, 1), (j, 2)} of Km,n, for i ∈ [m] and j ∈ [n], is naturally associated
a square (i, j) ∈ [m]×[n] in the m×n chessboard. A graph Γ (more precisely the set
E(Γ) of its edges) is naturally interpreted as a subset of the chessboard [m]× [n] =
E(Km,n). Using this connection we easily observe the following interesting fact:
• The lexicographic shelling on Kn,n is NOT a shelling on ∆n,2 ⊂ Kn,n.

3. Fair division of a necklace

• There are r persons (agents, thieves) participating in a fair division of a neck-
lace.

• There are n different types of gemstones (beads) in the necklace and the
number of beads of each type is divisible by r.

• The thieves want to cut the necklace and fairly distribute the pieces so that
each of them has equal number of beads of each type.

• The problem is to determine the smallest number of cuts which makes the fair
distribution possible.

3.1. Fair division of a continuous necklace

• In a continuous version of the problem the necklace is the interval [0, 1].
• The distribution of gemstones is described by continuous measures µi (i =

1, . . . , n).
• Interval [0, 1] is divided into the smallest possible number of pieces, which are

collected into r groups V1, . . . , Vr.
• The division is fair if all agents receive the same value of the necklace

µi(
⋃

Vj) =
1
r
µi([0, 1]) for all i = 1, . . . , n and j = 1, . . . , r .

In Figure 2 we see a fair division of a continuous necklace, with 4 uniform
measures supported by disjoint intervals, among 4 agents, with 12 cuts. Note that
the number of pieces is 13 = 3 · 4 + 1 and that the division is almost equicardinal
in the sense that all agents receive as equal number of pieces as arithmetically
possible.
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Fig. 2. A fair division of a continuous necklace with 4 thieves

Exercise. How many solutions are there? Is there a fair division which is
not almost equicardinal? Is there a fair division where one of the thieves is given
only two pieces of the necklace?

3.2. Theorem of Noga Alon

Theorem 3.1. (N. Alon [1]) Let µ1, µ2, . . . , µn be a collection of n (absolutely)
continuous probability measures on [0, 1]. Let r ≥ 2 and N := (r− 1)n. Then there
exists a partition of [0, 1] by N cut points into N + 1 intervals I1, I2, . . . , IN+1 and
a function f : [N + 1] → [r] such that for each µi and each j ∈ [r],

∑

p∈f−1(j)

µi(Ip) = 1/r .

The measures (mass distributions) exhibited in Figure 2 are quite special. The
theorem of Alon says that, given r agents and n arbitrary mass distributions on
[0, 1], one can always construct a fair division with the same number (r − 1)n of
cuts, needed for a fair division of pairwise disjoint subintervals.

3.3. Almost equicardinal fair splitting

Example 3.2. Assume that the measures µj (j = 1, . . . , n) are supported by
pairwise disjoint subintervals of [0, 1]. In this case we need precisely (r − 1)n cuts
which dissect the necklace into (r − 1)n + 1 parts. For this choice of measures if

(r − 1)n + 1
r

= k +
s

r
(0 ≤ s < r)

then there exists a fair partition/allocation of measures to r agents, which is almost
equicardinal in the sense that and each agent is given either k or k + 1 pieces of
the necklace.

(A solution in the case r = 4 is exhibited in Figure 2.)
N. Alon proved his Theorem 3.1 in [1] and included this result in his lecture

at the 1990 ICM in Kyoto, as one of the results which require non-constructive
(topological) methods for their proof. It is interesting that the following natural
question was asked more than thirty years later and answered positively in [10], for
the case when r is a prime power .
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Problem 3.3. For a given collection {µj}n
j=1 of absolutely continuous mea-

sures on [0, 1] and r agents, is it always possible to find a fair, almost equicardinal
partition/allocation of the necklace.

Theorem 3.4. (D. Jojić, G. Panina, R.T. Živaljević [10]) For given positive
integers r and n, where r = pν is a power of a prime, let k = k(r, n) and s = s(r, n)
be the unique non-negative integers such that (r − 1)n + 1 = kr + s and 0 ≤ s < r.
Then for any choice of n continuous, probability measures on [0, 1] there exists a
fair partition/allocation of the associated necklace with (r − 1)n cuts which is also
(k, s)-equicardinal in the sense that:

• each thief (agent) gets no more than k + 1 parts (intervals);

• the number of thieves receiving exactly k + 1 parts is not greater than s.

Conjecture 3.5. Note that Theorem 3.4 is a generalization of Theorem 3.1
only if the number of agents is a prime power, r = pk. We conjecture that this
condition is necessary in the sense that if r is not a prime power Theorem 3.4 is no
longer true.

3.4. Equicardinal fair splitting

Corollary 3.6. (Equicardinal necklace-splitting theorem) In the special
case s = 0, or equivalently if (r − 1)n + 1 is divisible by r, the Almost equicardi-
nal necklace-splitting theorem guarantees the existence of a fair partition/allocation
which is equicardinal in the sense that each thief is allocated exactly the same num-
ber of pieces of the necklace. Here we tacitly assume that the necklace is generic,
i.e. that all (r − 1)n cuts are needed.

3.5. Classical configuration space for the necklace splitting

• Each division of the necklace is described by a pair (x, f), a partition/allocation
of the necklace.

• A partition x of the necklace [0, 1] is a sequence

0 = x0 ≤ x1 ≤ . . . ≤ xN ≤ xN+1 = 1 .

• f : [N + 1] → [r] is an allocation function.

The configuration space (generalized chessboard complex) which parameter-
izes all partitions/allocations (x, f) is the simplicial complex

(3.1) (∆N )∗r∆
∼= [r]∗(N+1) ∼=

{(x1 − x0)E1,f(1) + (x2 − x1)E2,f(2) + · · ·+ (xN+1 − xN )EN+1,f(N+1)}(x,f)

where Ei,j is the (r× (N + 1))-matrix which has coefficient 1 at (i, j) and all other
coefficients are 0.
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Here it is not necessary to know the exact meaning of (∆N )∗r∆ and [r]∗(N+1)

(for the definitions of “joins” and “deleted joins” of complexes the reader is referred
to [13]). Instead, one should recognize in the configuration space of all matrices
(3.1), parameterized by all partitions/allocations (x, f), the geometric realization
of the (relaxed) chessboard complex where the rooks are non-attacking only in the
columns of the chessboard [r]× [N + 1].

3.6. Naive configuration space for equicardinal splitting
• In (almost) equicardinal necklace-splitting theorem all thieves receive (almost)

the same number of pieces of the necklace.
• The corresponding configuration space is the subspace C1 ⊂ (∆N )∗r∆ of all par-

titions/allocations (x, f) such that the sets f−1(i) (i ∈ [r]) are all of (almost)
the same cardinality.

• The naive configuration space C1 is N -dimensional, however it is not (N − 1)-
connected, the corresponding Borsuk-Ulam type theorem is not true and the
“usual proof” of Theorem 3.1 (see [13]) breaks down!

3.7. Refined configuration space for equicardinal splitting
• (New idea) Initially allow a larger number of cuts N = (r−1)(n+1) (before it

was (r−1)n) and force some of these cuts to be superfluous by an appropriate
choice of the configuration space.

• Refined configuration space C2 is defined as the simplicial complex of all rook
placements on the (N + 1)× r chessboard where N = (r − 1)(n + 1) and:

1. In each column there is at most one rook.
2. In each row there are at most (k + 1) rooks.
3. The number of rows where there are exactly (k + 1) rooks is at most s.

• Formally C2 is the symmetric multiple chessboard complex Σ(∆k,1
N+1,r) =

Σ(∆k1,...,kr;1
N+1,r ) with parameters k1 = · · · = ks = k+1 and ks+1 = · · · = kr = k,

see [12, Definition 2.1].
• Alternatively, the configuration space C2 can be described [12, Definition 2.3]

as the symmetrized deleted join SymmDelJoin(K1, . . . ,Kr) where

K1 = · · · = Ks =
(

[N + 1]
6 k + 1

)
,Ks+1 = · · · = Kr =

(
[N + 1]

6 k

)
.

3.8. The configuration space C2 has desired properties

Theorem 3.7. (D. Jojić, S. Vrećica, R.Živaljević, [12])
• Let r, n ≥ 2 and let rk+s = (r−1)n+1 where k and s are the unique integers

such that k ≥ 1 and 0 ≤ s < r.
• Let N = (r − 1)(n + 1) and m = N + 1.

Then the symmetric deleted join SymmDelJoin(K1, . . . , Kr) is (m− r − 1)-
connected where

K1 = · · · = Ks =
(

[N + 1]
6 k + 1

)
, Ks+1 = · · · = Kr =

(
[N + 1]

6 k

)
.
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3.9. The original motivation for proving Theorem 3.7
Theorem 3.7 was proved by a shelling argument, similar but more complex

then the argument presented in Section 5 for standard chessboard complexes. Its
main application in [12] is the following theorem.

Theorem 3.8. (Balanced generalized van Kampen-Flores theorem, [12, The-
orem 1.2]) Let r ≥ 2 be a prime power, d ≥ 1, N ≥ (r−1)(d+2), and rk+s ≥ (r−1)d
for integers k ≥ 0 and 0 ≤ s < r. Then for every continuous map f : ∆N → Rd,
there are r pairwise disjoint faces σ1, . . . , σr of ∆N such that f(σ1)∩· · ·∩f(σr) 6= ∅,
with dim σi ≤ k + 1 for 1 ≤ i ≤ s and dim σi ≤ k for s < i ≤ r.

Theorem 3.8 confirmed a conjecture from [8] (Conjecture 6.6). It extends and
unifies many earlier results including the following.
• Implies positive answer to the ‘balanced case’ of the problem whether each

admissible r-tuple is Tverberg prescribable, [8, Question 6.9].
• The classical van Kampen-Flores theorem is obtained if d is even, r = 2, s = 0,

and k = d
2 .

• The sharpened van Kampen-Flores theorem [8, Theorem 6.8] corresponds to
the case when d is odd, r = 2, s = 1, and k = bd

2c.
• The case d = 3 of the ‘sharpened van Kampen-Flores theorem’ is equivalent

to the Conway-Gordon-Sachs theorem which says that the complete graph K6

on 6 vertices is “intrinsically linked”.
• The generalized van Kampen-Flores theorem [8, Theorem 6.3], which improves

upon earlier results of Sarkaria and Volovikov, follows for s = 0 and k =
d r−1

r de.

4. Envy-free division of a cake

Given a commodity (resource) and a set of agents (players), one of the goals of
welfare economics (https://en.wikipedia.org/wiki/Welfare economics) is to
divide the resource among the agents in an envy-free manner. Envy-freeness is the
principle where every player feels that their share is at least as good as the share
of any other agent, and thus no player feels envy. Here is an example.
• A birthday party is planned for r children.
• Children may have different taste and preferences.
• The birthday cake is divided into r pieces {Vi}r

i=1

Cake = V1 t V2 · · · t Vr .

• A division of the cake is envy-free if each child is satisfied with their piece of
cake and doesn’t want to trade with any other child.

• In other words there is a permutation π : [r] → [r] which connects each child
(labeled by i ∈ [r]) with the piece Vπ(i) she prefers.
The classical approach to envy-free division and equilibrium problems arising

in mathematical economics typically relies on Knaster-Kuratowski-Mazurkiewicz



Theory of chessboard complexes 119

theorem, Sperner’s lemma or some extension involving mapping degree. Here we
outline a different and relatively novel approach, originally developed in [10] and
[15], where the emphasis is on configuration spaces and equivariant topology with
chessboard complex ∆r,2r−1, as the main character.

We illustrate the method by proving an extension of the classical envy-free
division theorem of Stromquist, Woodall, and Gale, where the emphasis is on pref-
erences allowing the players to choose degenerate pieces of the cake, see [4, 17,
19].

4.1. The difference between envy-free and fair division
• In fair division there is an objective (external) criterion of fairness. All players

agree about the value of the pieces and have the same preferences.
• In envy-free division each player has her own preferences which may be un-

known or even irrational (from the view point of other players).
• In fair division an arbitrary permutation of pieces is still a fair division.
• In envy-free division, if it exists at all, the pieces usually cannot be exchanged.

4.2. A mathematical model of the cake division
There are r players who want to divide among themselves a commodity,

referred to as the cake. In a mathematical simplification a basic model of the
cake is the interval I = [0, 1], which should be cut into r pieces by r − 1 cuts.
Therefore a partition (cut) of the cake (in this model) is a sequence of numbers
x = (x1, . . . , xr−1) where

(4.1) 0 6 x1 6 x2 6 · · · 6 xr−1 6 1 .

The pieces of the cake arising from this division are the closed intervals (tiles)

Ii = Ii(x) := [xi−1, xi] (i = 1, . . . , r), where x0 = 0 and xr = 1

while λi = xi − xi−1 are the corresponding barycentric coordinates.
• The configuration space, parameterizing all possible cuts, is the standard

(r − 1)-dimensional simplex in Rr

∆r−1 = {λ1e1 + · · ·+ λrer | λ1 + · · ·+ λr = 1 and (∀k)λk ≥ 0 } .

Given a cut x ∈ ∆r−1, each player should make up her mind and choose one
or more pieces that they like the most or prefer to the rest of the pieces by some
subjective preference. What is the mathematical equivalent of this procedure?

There are several possibilities how to express preferences in a mathematical
language. Here we use one of the simplest models which nevertheless preserves
most of the features of more general constructions.
• Each player (labelled by j ∈ [r]) has her own measure νj she uses for evaluating

the pieces of the cake. A tile Ik is preferred if and only if

νj(Ik) ≥ νj(Ii) for each i ∈ [r]

or in other words if νj(Ik) = Mj = Mj(x) := max{νj(Ii)}r
i=1.
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In this model all measures νj are continuous (with respect to the Lebesgue
measure µ)

νj(A) =
∫

A

φjdµ

where φj : [0, 1] → R is a measurable density function and A ⊆ [0, 1] a measurable
set.

The densities φj are not necessarily positive, so in general we deal with signed
measures, meaning that if νj(J) < 0 then the player j would prefer the empty set
to J . This is quite reasonable and happens for example in a rent-partition or chore-
division problem where the divided resource is undesirable, so that each participant
wants to get as little as possible.

On the other hand if the players divide something desirable, such as a cake or
a French loaf (Baguette) then φj ≥ 0 is a reasonable assumption and in that case
we talk about “hungry players”. Note that the loaf of bread can be partially burnt
so the corresponding density function may be both positive and negative.

4.3. Envy-free division with hungry players
The following theorem, associated with the names Stromquist, Woodall, and

Gale [9, 17, 19], claims that an envy-free division is always possible if the players
are hungry.

Theorem 4.1. Suppose that the preferences of all players are described by
positive measures νj (j = 1, . . . , r), with associated non-negative density functions
φj ≥ 0. Then there exists a cut x ∈ ∆r−1 and a permutation π ∈ Sr such that for
the corresponding partition {Ik(x)}r

k=1 of the interval [0, 1]

νj(Iπ(j)(x)) ≥ Mj(x) := max{νj(Ik(x)) | k = 1, . . . , r}
for each j = 1, . . . , r.

Proof. Choose ε > 0. For each player j ∈ [r] define Aj
i ⊆ ∆r−1 as the set of

all cuts x ∈ ∆r−1 such that νj(Ii(x)) ≥ Mj(x). In other words Aj
i collects all cuts

where the player j prefers the tile Ii. By continuity of the measure Aj
i is a closed

set. Moreover {Aj
i}r

i=1 is a covering of ∆r−1 for each j, since in each cut a player
prefers some of the tiles.

Similarly, let Oj
i = {x ∈ ∆r−1 | νj(Ii(x)) > Mj(x) − ε} be an open superset

of Aj
i . Let gj

i : ∆r−1 → [0, 1] be a continuous function such that

gj
i (A

j
i ) = {1} and gj

i (∆
r−1 \Oj

i ) = {0} .

By construction the functions

f j
i =

gj
i

gj
where gj := gj

1 + · · ·+ gj
r

create a partition of unity, in the sense that f j
1 (x) + · · · + f j

r (x) = 1 for each
x ∈ ∆r−1. Moreover, if f j

i (x) > 0 then x ∈ Oj
i .
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Note that the condition that the players are hungry (and never choose degen-
erate tiles) translates into the condition that for all i and j

(4.2) f j
i (∆r−1

i ) = {0} where ∆r−1
i := {x ∈ ∆r−1 | λi = 0} .

Note that the map hi = 1
r (f1

i + f2
i + · · ·+ fr

i ) also satisfies the condition (4.2). It
follows that hi(∆r−1

i ) ⊆ ∆r−1
i for all i which implies that the restriction of the map

(4.3) h = (h1, h2, . . . , hr) : ∆r−1 −→ ∆r−1

to the boundary ∂∆r−1 is homotopic (by the linear homotopy) to the identity map.
It follows that the degree of this map is equal to one and, as a consequence,

h(x) = ( 1
r , . . . , 1

r ) for some x ∈ ∆r−1.
Summarizing, we have established the existence of a cut x such that the matrix

M = (f j
i (x)) is a bistochastic matrix. By Birkhoff-von Neumann theorem M is a

convex combination of permutation matrices. Each of these matrices produces a
permutation π ∈ Sr such that f j

π(j)(x) > 0 (and consequently x ∈ Oj
π(j)) for each

j ∈ [r].

Finally, by choosing a zero sequence εn → 0 we obtain a sequence xn ∈ Oj,εn

π(j),
which can be assumed to be convergent, xn → x. Since

⋂

n∈N
Oj,εn

π(j) = Aj
π(j)

we conclude that x ∈ Aj
π(j) for each j ∈ [r], which completes the proof of the

theorem.

4.4. Envy-free division with not necessarily hungry players
Condition (4.2) played a decisive role in the proof of Theorem 4.1. What can

be said in the absence of this condition?
Avvakumov and Karasev [4], extending some partial results of Segal-Halevi

[16] and of Meunier and Zerbib [14], almost forty years after the appearance of [17]
and [19], proved a general result where (under some conditions) the players are
allowed to prefer and choose an “empty piece” (= a degenerate tile), if all other
tiles are less satisfactory. The proof they offered is also based on a degree theoretic
argument and relies on the simplex, as the configuration space, as the proof of
Theorem 4.1. However their proof is more complex and more technical.

Here we present a simpler and possibly more conceptual proof of the result
of Avvakumov and Karasev, which uses equivariant topology and chessboard com-
plexes as configuration spaces. This proof was originally discovered in [10], as part
of the proof of (more general) result [10, Corollary 6.10]. Another presentation of
this proof, more succinct and with all details included can be found in [15].

As in the case of Theorem 4.1, by sacrificing some generality, we formulate
and prove a version involving the preferences defined in terms of signed measures.

Theorem 4.2. Suppose that the preferences of all players are described by
signed measures νj (j = 1, . . . , r), with associated density functions φj. Then there
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exists a cut x ∈ ∆r−1 and a permutation π ∈ Sr such that for the corresponding
partition {Ik(x)}r

k=1 of the interval [0, 1]

νj(Iπ(j)(x)) ≥ Mj(x) := max{νj(Ik(x)) | k = 1, . . . , r}
for each j = 1, . . . , r.

Proof. (outline) We mimic the proof of Theorem 4.1 with some important
modifications. The most important difference is the use of the chessboard complex
∆r,2r−1, instead of the simplex ∆r−1, as the main configuration space.

In particular the map (4.3) will be replaced by an equivariant map
h : ∆r,2r−1 → ∆r−1. The shellability of the complex ∆r,2r−1, established in Sec-
tion 5, implies that ∆r,2r−1 is a (r − 2)-connected, (r − 1)-dimensional simplicial
complex with a free action of the group G = (Zp)k (here we use the fact that r = pk

is a prime power).

The sets Aj
i and Oj

i are now defined as (G-invariant) subspaces of the chess-
board complex ∆r,2r−1. For example (x, f) ∈ Aj

i means that

νj(If−1(i)(x)) ≥ Mj(x) := max{νj(Ik(x)) | k = 1, . . . , r} .

Let (f j
i ) be a matrix of functional preferences associated to the matrix of

preferences (Aj
i ), subordinated to (Oj

i ), which is also equivariant in the sense that

(4.4) f j
σ(i)(σ(x, α)) = f j

i (x, α) .

In particular (f j
i ) is a collection of functions f j

i : ∆r,2r−1 → [0, 1] satisfying the
following conditions.

1. For each j ∈ [r − 1] the collection {f j
i }r

i=1 is a partition of unity

f j
1 + f j

2 + · · ·+ f j
r = 1 .

2. For each i and j
Aj

i ⊆ {x | f j
i (x) > 0} ⊆ Oj

i .

Let hi = 1
r (f1

i + f2
i + · · ·+ fr

i ). The map

h = (h1, h2, . . . , hr) : ∆r,2r−1 −→ ∆r−1

is equivariant and, since ∆r,2r−1 is (r − 2)-connected, Volovikov’s theorem [13]
guarantees that h(x, α) = ( 1

r , . . . , 1
r ) for some (x, α) ∈ ∆r,2r−1.

As in the proof of Theorem 4.1, we established the existence of a parti-
tion/allocation (x, f) such that the matrix M = (f j

i (x, f)) is a bistochastic matrix.
After that the proof is completed by a similar argument as the proof of Theorem
4.1.

5. Shellability of the chessboard complex ∆m,n

G. Ziegler proved in [20] that chessboard complexes ∆m,n are vertex decom-
posable for m > 2n − 1. As vertex-decomposability is a stronger property than
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shellability (see [6]), it follows that chessboard complexes are shellable. We give
a different proof of this result, illustrating the central ideas, which can be with
some modifications applied (as it was done in [11] and [12]) to other classes of
(generalized) chessboard complexes.

Perhaps the main initial obstacle, as remarked by Ziegler in [20], is that the
natural lexicographical order of facets of ∆n,m is not a shelling order.

Note that the whole chessboard complex ∆m,n can be obtained as a union of
m cones

(5.1) ∆m,n =
m⋃

i=1

(i, 1) ∗Ki,

where Ki
∼= ∆m−1,n−1 is the chessboard complex on the board obtained by deleting

the first row and i-th column from the chessboard [m] × [n]. If we knew, by the
inductive assumption, that ∆m−1,n−1 is shellable, it would be natural to interpret
this shelling as a shelling of (i, 1) ∗ Ki, with the idea to extend it to the whole
complex ∆m,n.

However this plan does not work in general since, as remarked by Ziegler,
there are difficulties if we use the natural order 1 < · · · < i − 1 < i + 1 < · · · < n
of the columns of Ki (see also the remark at the end of Section 2.

We will show how to overcome this difficulty, by using the symmetry of chess-
board complexes, and utilizing the following linear order <i of the columns of Ki:

(5.2) i + 1 <i i + 2 <i · · · <i n <i 1 <i · · · <i i− 1.

Remark 5.1. A discrete set is shellable with respect to any order. We start
by fixing 1 < 2 < . . . < m as the shelling order of ∆m,1.

We describe a shelling order on ∆m,n recursively, by assuming that a shelling
order on complexes ∆k,r is already defined, for all r < n and k > 2r−1. The facets
of ∆m,n are ordered by the following guiding principles.
(1) The position of the rook in the first row.

Recall that each facet of ∆m,n contains exactly one rook in the first row. Our
shelling order starts with the facets of ∆m,n having a rook at the position (1, 1),
followed by the facets with a rook at the position (2, 1), etc. The shelling order
finishes with the facets that contain a rook at the position (m, 1). In other words,
all facets of (i, 1) ∗Ki come in front of the facets of (j, 1) ∗Kj for 1 6 i < j 6 m.
Here we use the decomposition of ∆m,n defined in (5.1).

Now, we describe the order of facets in each (i, 1) ∗Ki. To order the facets of
∆m,n that have rook at (i, 1) for i > 1 we consider:
(2) The number of occupied columns immediately before the i-th column.

The shelling order of the facets containing the rook at (i, 1) starts with facets
that do not contain a rook in the column (i− 1). These facets span a subcomplex
of ∆m,n that is isomorphic to ∆m−2,n−1 (we delete the first row and columns i and
i − 1). By the inductive assumption this subcomplex is shellable. We order this
class of facets of ∆n,m, following the assumed shelling order on ∆n−1,m−2.
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The order of the facets of ∆n,m that contain a rook at the position (i, 1)
continues with the facets that have a rook in the column i − 1 but not in the
column i − 2. Note that the subcomplex of ∆m,n spanned by the facets that
contain the rooks at (i, 1) and (i − 1, j) (for a fixed j > 1), but do not contain a
rook in the column i− 2 is isomorphic to ∆m−3,n−2 (here we delete two rows and
three columns). Again, we use the assumption of shellability of ∆m−3,n−2 to define
the order of corresponding facets of ∆m,n. All such facets that contain a rook at
(i− 1, p) precede the facets that contain the rook at (i− 1, q) if p < q.

Our shelling order of the facets containing a rook at (1, i) continues further
in the same manner. We order the facets that have a rook at (i, 1), contain the
rooks in the columns i− 1, . . . , i− k +1 (at fixed positions), but not in the column
i− k. Now, we delete column i, the last k columns i, i− 1, . . . , 1,m, . . . , m− k + i
in the order defined in (5.2) and first k rows. The remaining part of the table
spans a subcomplex of ∆m,n isomorphic to ∆m−k−1,n−k, which is again shellable by
assumption. For a fixed configuration of the rooks in the columns i−1, . . . , i−k+1
(there are (n− 1)(n− 2) · · · (n− k + 1) such configurations) the shelling order for
∆n−k,m−k−1 defines the order of corresponding facets of ∆n,m.

We illustrate the construction described above by some examples.
Example 5.2. We start with the shelling of ∆m,2 (m > 3) described above.

Assume that the squares in the first row are a1, a1, . . . , am and the squares in the
second row are b1, b2, . . . , bm. The chosen shelling order for ∆m,2 is

a1b2, a1b3, . . . , a1bm; a2b3, a2b4, . . . , a2bm, a2b1; . . .
. . . ; aibi+1 . . . , aibm, aib1, . . . , ai−1; . . . , amb1, . . . , ambm−1.

After that we list the facets of ∆5,3 using the labels of the squares as shown in the
following table

b1 b2 b3 b4 b5

a1 a2 a3 a4 a5

1 2 3 4 5

We apply the fixed shelling order for ∆4,2 described above, but we change the
labels of columns. The shelling of (1, 1) ∗K1 is

b2 b3 b4 b5

a2 a3 a4 a5

1

1a2b3 1a2b4 1a2b5 1a3b4 1a3b5 1a3b2

1a4b5 1a4b2 1a4b3 1a5b2 1a5b3 1a5b4

For (2, 1) ∗K2 we begin with the facets that do not contain a rook in the first
column, and order them as in the shelling of ∆3,2:

b3 b4 b5

a3 a4 a5

2

2a3b4 2a3b5 2a4b5 2a4b3 2a5b3 2a5b4
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Now, we list facets from (2, 1) ∗K2 that contain a rook in the first row, but
not in the column 5.

b3 b4

a1

2

2a1b3 2a1b4

b1

a3 a4

2

2b1a3 2b1a4

Facets 2a1b5 and 2b1a5 from (2, 1) ∗K2 that contain rooks in the column 1 and the
column 5 finish this part of the shelling of ∆5,3.

We continue by describing the shelling of the facets from (3, 1)∗K3. First, we
list facets with no rooks in the column 2:

b1 b4 b5

a1 a4 a5

3

3a4b5 3a4b1 3a5b1 3a5b4 3a1b4 3a1b5

These facets are followed by the facets containing a rook in the second column, but
not in the first:

b4 b5

a2

3

3a2b4 3a2b5

b2

a4 a5

3

3b2a4 3b2a5

The last two facets at this stage are 3a2b1 and 3b2a1.
Now, we list all facets with the rook at the position (4, 1). We begin with the

facets without a rook in the column 3:

b1 b2 b5

a1 a2 a5

4

4a5b1 3a5b2 4a1b2 4a1b5 4a2b5 3a2b1

followed by facets

b1 b5

a3

4

4a3b5 4a3b1

b3

a1 a5

4

4b3a5 4b3a1

The last two facets at this stage are 4a3b2 and 4b3a1.
Our shelling is completed by ordering of facets with the rook at the position

(5, 1)

b1 b2 b3

a1 a2 a3

5

5a1b2 5a1b3 5a2b3 5a2b1 5a3b1 5a3b2
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After these facets we list facets that have a rook in the column 4, but not in the
column 3:

b1 b2

a4

5

5a4b1 5a4b2

b4

a1 a2

5

5b4a1 5b4a2

The last two facets are 5a4b3 and 5b4a3.

In our construction, the shellability of ∆m,n follows from the shellability of
the complex ∆m−2,n−1. This explains the condition m > 2n− 1 in Ziegler’s result.

Let us recapitulate the construction above by describing how to compare the
facets of ∆m,n. For a facet A = {(1, a1), . . . , (n, an)} of ∆m,n we define
(a) i(A) = a1 is the position of the rook in the first row;
(b) r(A) = r is the maximal r ∈ N such that A has rooks in the column a1 and

r − 1 last consecutive columns in the order defined in (5.2). If r < a1, then
the column a1 − r is empty, and if r > a1 the column n− r + a1 is empty.

(c) Let R(A) = (1, i2, . . . , ir) be the r-tuple of indices that encode the rows
containing the rooks in r consecutive columns. If r < a1 we have that
{(a1, 1), (a1 − 1, i2), . . . , (ar − r + 1, ir)} ⊆ A. We define R(A) similarly if
r > a1.
Recall the definition of the lexicographical order of r-tuples

(a1, a2, . . . , ar) <L (b1, b2, . . . , br) ⇔ a1 < b1 or ai < bi and aj = bj for all j < i.

We define the linear order ¿ on the facets of ∆m,n as follows

(5.3) A ¿ B ⇔





i(A) < i(B), ; or
i(A) = i(B) and r(A) < r(B), ; or
i(A) = i(B), r(A) = r(B) and R(A) <L R(B), ; or
R(A) = R(B) and A′ ¿ B′.

Here A′ and B′ denote faces of A and B obtained by deleting their common rooks
contained in the rows labelled by elements from R(A) = R(B). Here we use the
assumption that ∆m−r−1,n−r is shellable.

The proof that ¿ is a shelling order is a special case of Theorem 4.4 in [12].
We will repeat shortly the arguments for the sake of completeness.

Case 1: i(A) = a1 < i(B) = b1.
If there exists an empty column j < b1 in B we let C = B − {(b1, 1)} ∪ {(j, 1)}.
If all columns from 1 to b1 are occupied in B, let i denote the row that contains
the rook in a1-th column. In that case we let C = B − {(a1, i)} ∪ {(j, i)}, for some
j > b1.

Case 2: i(A) = i(B) = a1, r(A) = rA < rB = r(B).
In this case, the column a1 − rA is empty in A, and if (a1 − rA, i) ∈ B, we let
C = B − {(a1 − rA, i)} ∪ {(j, i)} for some empty column in B.
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Case 3: i(A) = i(B) = a1, r(A) = r(B) = r, R(A) <L R(B).
Let ij be the first entry in R(A) = (1, i2, . . . , ir) where RA is lexicographically
smaller than RB . When we go from the a1-th column to the left, this is the first
column where the rook in A is below the rook in B. Let x and y denote the rows
containing the rooks in the ij-th column in A and B respectively. In that case we
define C = B − {(ij , y)} ∪ {(p, y)} for an adequate p.

Note that in any of the above cases we obtain C ¿ B such that C and B
differ in just one vertex.

Case 4: If R(A) = R(B) we compare A′ and B′, the facets of ∆m−r−1,n−r

(we delete r + 1 columns a1, a1 − 1, . . . , a1 − r and r rows from R(A)). At this
place we need the assumption about shellability of the chessboard complex on the
smaller table. As n ≥ 2m− 1 implies n− r − 1 ≥ 2(m− r) for all r, this condition
is precisely what is needed.
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[22] R.T. Živaljević and S.T. Vrećica, The colored Tverberg’s problem and complexes of injective
functions, J. Combin. Theory Ser. A 61 (1992), 309–318.

D.J.: Faculty of Science, University of Banja Luka, Bosnia and Herzegovina

S.V.: Faculty of Mathematics, University of Belgrade, Serbia

E-mail : vrecica@matf.bg.ac.rs
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