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Abstract. This paper demonstrates how recognition of a hidden potential of
rather involved mathematical explorations in a student’s unintentionally far-reaching
response to an open-ended question about constructing a visual pattern allows for the
development of the so-called TITE problem-solving activities that require concurrent
use of computing technology and mathematical reasoning. The paper begins with the
presentation of such a response by an elementary teacher candidate and it continues
towards revealing the potential of the response as a springboard into the development
of various TITE generalization activities with ever increasing conceptual and symbolic
complexity. It is argued that whereas one of the goals of moving from particular
to general is to assist in understanding special cases, the construction of workable
computational algorithms for spreadsheet-supported problem solving and posing is
not possible without experience in generalization. The mathematical content of the
paper deals with polygonal numbers and their partial sums. Computer programs used
are Wolfram Alpha (free interface) and Microsoft Excel spreadsheet.
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1. Introduction

The motivation to write this paper was due to the author’s interest in the
idea of developing the so-called TITE mathematics curriculum [1, 2], the prob-
lems of which, while requiring technology-enabled (TE) solution strategies, are still
technology-immune (TI) in the sense that they do require using mathematical rea-
soning not replaceable by the modern-day technology despite its various symbolic
computation capabilities. The more technology grows in the scope and sophistica-
tion of symbolic computations, the more challenging for mathematics educators is
to preserve TI components of traditional problem-solving activities. TITE prob-
lems cannot be automatically solved by software; yet, the role of technology in
dealing with those problems is critical. Within a TITE problem-solving context,
argument and computation go hand by hand, leading the way to the appropriate
use of technology. In particular, by learning to solve a TITE problem, one develops
the appreciation of the notion of “instrumental genesis” [16] through distinguishing
between positive and negative affordances of high-level digital tools and enabling
their conceptual applications. Thus, the goal of this paper is to contribute to TITE
mathematics education research efforts by finding the right balance between TI and
TE parts of problem-solving activities.
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The content of this paper, aiming to provide an example of a proper TITE
setting, was motivated by the author’s experience working with teacher candidates
within an elementary mathematics content and methods course. Such work can
hardly be described in TITE terms as technology at the primary level is mostly lim-
ited to concrete materials (commonly known as manipulatives) and mathematical
reasoning skills are almost non-existent at the beginning of the course. Therefore,
the author’s motivation has been of an intrinsic nature which, as noted by Biggs [4],
is associated with “the intellectual pleasure of problem solving” (p. 62), something
that is important to be imparted to future teachers of mathematics.

Consistent with the above description of the course and background of its
participants, one of the first course’s homework included the creation of different
visual patterns to be described symbolically. Visual patterns, frequently supported
by either physical or virtual manipulatives, are commonly introduced at the kinder-
garten level and are traditionally referred to as AB patterns. For example, both
dog cat/dog cat/dog cat/ . . . and dog-dog cat-cat/ dog-dog cat-cat / dog-dog
cat-cat / . . . are AB patterns. Teaching young children to appreciate the sameness
in miscellany may be considered as teaching early algebra to the children. During
the discussion of the homework, one of the teacher candidates presented a pattern
shown in Figure 1; yet she could not describe it using the AB-language. Indeed,
the repetition of colors, red [R] and blue [B], in the pattern varied by increasing
monotonically at each step. Instead of saying to the teacher candidate that this is
not a pattern sought by the homework and, thus, it has to be corrected to match
what was sought, the class was advised to recognize the pattern as a creative one
for it appeared to allow for multiple modifications and extensions, something that
is the major condition for encouraging creativity in the classroom. This advice was
in the spirit of Montessori [13] who emphasized the importance for education ”the
recognition of new phenomena, their reproduction and utilization” (p. 73). The
rest of the paper is aimed at illustrating this vision of the pattern by the author
and using it as a springboard into TITE activities appropriate for different levels
of pre-college mathematics education.

Figure 1. A pattern offered by a teacher candidate.

2. Creativity as a foundation of success

Teacher candidates have to be prepared to recognize student creativity ear-
ly. Educators see creativity as “one of the essential 21st century skills . . . vital
to individual and organizational success” [3, p. 1]. Teachers’ ability to appreciate
mathematical creativity of their students that may be hidden behind one’s im-
mature classroom performance, is critical for successful teaching and productive
learning of mathematics. Such ability develops through teachers’ own preparation
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to teach the subject matter. If students’ hidden creativity is not acknowledged and
supported by a teacher, it would most likely remain latent and eventually could
die out. Likewise, if teacher candidates’ creative potential is overlooked, they will
impart such attitude to their own students. After all, the acknowledgement of
creativity, whatever the context, does uplift one’s excitement about the context.
Needless to say, such acknowledgement requires intellectual courage of going into
an uncharted territory and pedagogical skills of balancing on the border between
known and unknown.

3. A question seeking information

What can be said about the pattern of Figure 1 from the perspective of creativ-
ity? How can such pattern be extended to allow for posing challenging questions,
something that young children, when given a freedom of asking questions, are not
hesitant to do? Learning of mathematics is more productive when questions are
asked by students rather than by the teacher. Research conducted by psycholo-
gists in public schools of various parts of the Brooklyn borough of New York City
in the mid 20th century provided evidence [11] that it is a forward-looking peda-
gogy, with its emphasis on critical thinking and experiential learning rather than
on the “rule method” [12], and not a student population that results in mathe-
matical problem solving manifesting creativity and insight. For instance, one such
forward-looking school “was located in a deteriorated slum which was populated
by recent immigrants who were minority group members and who were of the lower
class” [11, pp. 62-63]. In particular, progressive problem-solving pedagogy, born
out of mathematically-oriented ideas of Gestalt psychology [21] with genesis in the
papyrus roll writings of ancient Egyptians [5], challenges belief that teachers are
the only ones in charge of questions in the classroom. Perhaps influenced by the
knowledge of Common Core State Standards [6] and recommendations for mathe-
matics teacher preparation by the Conference Board of the Mathematical Sciences
[7], one of the author’s students, a teacher candidate, put it as follows: “If a student
asks why and a teacher cannot explain how something has come to be, the student
loses interest in the subject and respect for the teacher”. This statement beautifully
resonates with one of Pólya’s classic writings for teachers: “No amount of courses
in teaching methods will enable you to explain understandably a point that you do
not understand yourself. Hence the second commandment for teachers: Know your
subject” [15, p. 102, italics in the original].

A question about the pattern, that a teacher might be asked by a student in
the era of Common Core State Standards [6] rooted in the ideas of the progressive
pedagogy of the mid-20th century [11], could be as follows: If the pattern shown
in Figure 1 continues as long as one wishes, which color, red or blue, will be at the
100th place? This question, that Isaacs [9] would have referred to as the one seeking
information (being, in general, of a less sophisticated type than the one requesting
explanation), immediately introduces learners of mathematics to a numeric envi-
ronment and, skipping the basics of early algebra, leads to a true school algebra
with its emphasis on the use of the language of functions as means of describing
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patterns. That is, the first step toward finding an answer to the above question
is to move from the letters R and B to numbers which can serve as labels of the
positions of colors in an evolving pattern.

There are several ways to associate the letters representing colors with nu-
meric labels. For example, one can describe numerically the last red cell in each
combination of equal quantities of R’s and B’s. Such approach brings one very close
to deciding the color of the 100th place: those red cells have the labels 1, 4, 9, 16,
25, and so on. What is special about these numbers? In the author’s experience,
elementary teacher candidates know that these are square numbers. In particular,
the numbers are squares of the ranks of “RB”-combinations in the evolving pattern.
So, the number 100, a square number, will be on the list. The equality 102 = 100
implies that the label 100 belongs to the “RB”-combination of rank 10. It is the
use of insightful strategy that provided a quick answer to apparently a not very
simple question. Note that if instead of focusing on the label for the last red cells,
one focused on the labels for the first red cells, the sequence 1, 3, 7, 13, 21, and so
on, would have resulted. This sequence does not include the number 100, so the
focus on the label for the first color does not deliver an answer right away.

One might ask, requesting explanation: How does one know which places, the
first or the last ones, have to be given labels in order to be a successful problem
solver? Often, request for explanation stems from epistemic curiosity [19] about a
method that provided information. There is no easy way to answer this question
(in particular, demonstrating that the question requesting explanation is indeed
more intelligent than the one seeking information). It could be that the switch
from focusing on the first color to focusing on the last color occurs unconsciously
once a sequence of labels 1, 3, 7, 13, 21 with no frame of reference familiar to
unsophisticated learners of mathematics comes to light. Such a switch is due to
insight or productive thinking [21], important intellectual tools of mathematical
problem solving. Furthermore, in the spirit of transition from arithmetic to algebra,
numerical evidence brings about the function f(n) = n2 which maps the rank n
of an “RB”-combination to the position of the last R within it. Because one has
to make n− 1 steps back to move from the last R to the first R within the “RB”-
combination of rank n, the function g(n) = n2 − n + 1 may also be considered
mapping the rank n of an “RB”-combination to the position of the first R within
it. One can check to see that g(1) = 1, g(2) = 3, g(3) = 7, g(4) = 13, g(5) = 21 –
familiar labels originally having no frame of reference. Now a quadratic function is
their frame of reference which was developed through generalization. As an aside,
note that this development is an example when solving a more general problem is
easier that solving its special case [14]. Thereby, this section may be concluded
with a remark that one of the goals of generalization in mathematics, in general,
and in the context of this paper, in particular, is to assist one in understanding and
resolving special cases.
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4. Alternative responses to the question seeking information

The content of pre-college mathematics and its methods of teaching are not
in the relation of dichotomy when methods do not depend on content and content
has little (if any) agency for the methods. It is the diversity of methods of teaching
mathematics used by a teacher stems from their knowledge of content. Moreover,
the appreciation of this diversity opens a window to teaching and learning a new
content. This vision of the relationship between content and methods implies that
multiple ways of solving a problem lead to new concepts and ideas about their use.
With this in mind, another way to explore the teacher candidate’s pattern (Figure 1)
is to note that the pattern can be presented as a continuous string of digits 11223344
. . . . The digits in the string do not represent positions of colors in the pattern;
rather, the digits, going in pairs, represent the ranks of “RB”-combinations where
the repetitions occur. Nonetheless, this transition is designed to demonstrate the
efficiency of numbers in describing the behavior of various non-numeric patterns and
it enables the study of visual patterns by the tools and methods of mathematics.
Towards this end, in the attempt to answer the original question about the color of
the 100th place, one can simply add the digits in the string until the sum reaches
the largest number smaller than 100 (alternatively, the smallest number larger than
100). Noting that each digit enters the string twice, one can come across twice the
sum of the first nine natural numbers 2 · (1+2+ · · ·+9) = 90 in which the number
9 (in the left-hand side of the last equality) points at the number of R’s and B’s in
the 9th two-color combination and the 90th position has blue color. Because the
10th “RB”-combination has ten R’s, once again, one can conclude that the 100th
place in the pattern of Figure 1 is colored red.

One can also see that by adding the odd number of digits beginning from
the first digit, one can get the positions of the last R’s in the pattern. In doing
so, one adds each time an odd number to the previous sum: 1, 1 + (1 + 2) = 4,
4 + (2 + 3) = 9, 9 + (3 + 4) = 16, 16 + (4 + 5) = 25, . . . , 81 + (9 + 10) = 100,
. . . In this representation, one can recognize a well-known fact that the sum of
consecutive odd numbers starting from one is always a square number. That is,
once again, the 100th place can be recognized to be filled with the last R in the
“RB” combination of rank 10.

The last two solutions were based on very important concepts of number
theory: triangular numbers tn = n(n + 1)/2 as the partial sums of consecutive
natural numbers, and square numbers sn = n2 as the partial sums of consecu-
tive odd numbers. Both triangular and square numbers are special cases of the
so-called polygonal (or figurate) numbers. In order to understand how polygonal
numbers develop, note that the sequences of consecutive natural numbers and con-
secutive odd numbers are arithmetic sequences with the differences one and two,
respectively; both starting from the number 1. This interesting connection of arith-
metic sequences to polygonal numbers known from the 3rd century mathematical
work by Diophantus [8] prompts one to use several other arithmetic sequences with
differences three, four, and so on in order to consider other polygonal numbers in-
cluding pentagonal numbers pn = (3n− 1)n/2 as the partial sums of the sequence
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1, 4, 7, 10, 13, . . . , 3n − 2, . . . (an arithmetic sequence with difference three)
and hexagonal numbers hn = (2n − 1)n as the partial sums of the sequence 1, 5,
9, 13, 17, . . . , 4n − 3, . . . (an arithmetic sequence with difference four). Indeed,

pn =
1 + (3n− 2)

2
n =

(3n− 1)n
2

and hn =
1 + (4n− 3)

2
n = (2n − 1)n. One can

see that the difference d of an arithmetic sequence is connected to its geometric
characteristic m (the number of sides in a polygon that the numbers represent)
through the formula d = m− 2.

Keeping in mind that “Generalities without interesting particular cases are
of little value” [15, p. 103], one can proceed to consider such a generality in the
form of the arithmetic sequence 1, 1 + d, 1 + 2d, 1 + 3d, . . . , 1 + (n − 1)d, . . . ,
with the first term one and difference d. The sum of its first n terms is equal to
1
2 (1 + [1 + d(n− 1)]) and can be referred to as the polygonal number of rank n and
side m = d + 2 (or the m-gonal number of rank n). Using the notation P (n,m) for
such a number yields the formula

(1) P (n,m) =
[(m− 2)(n− 1) + 2]n

2
.

This connection of the pattern of Figure 1 to polygonal numbers, made pos-
sible through alternative responses to the basic question, motivates the pattern’s
extension and generalization to include these numbers as the pattern guides. For
instance, the sequence of natural numbers served as a guide for the pattern offered
by the teacher candidate (Figure 1). Another direction towards generalization is to
consider the case of more than two colors, although unlike the case of the polygons
the number of sides of which is not limited, the number of colors, although large, is
limited. Thereby, this section may be concluded with a remark that one of the goals
of generalization in mathematics is the development of new concepts and tools of
mathematical exploration.

5. Generalizing towards p-color patterns guided by m-gonal numbers

To begin, consider the case of p colors, p > 2, and the pattern
(2)
C1C2 . . . Cp︸ ︷︷ ︸

p

C1C1C1 . . . CpCpCp︸ ︷︷ ︸
3p

C1 . . . C1︸ ︷︷ ︸
6

. . . Cp . . . Cp︸ ︷︷ ︸
6︸ ︷︷ ︸

6p

. . . C1 . . . C1︸ ︷︷ ︸
n(n+1)

2

. . . Cp . . . Cp︸ ︷︷ ︸
n(n+1)

2︸ ︷︷ ︸
n(n+1)

2 p

. . .

in which the sequence of triangular numbers 1, 3, 6, . . . , 1
2n(n + 1) serves as the

pattern guide; that is, the number of Ck’s (i.e., colors) in this p-color combination
varies according to this sequence. As the numbers 3 and 6 are triangular numbers
of ranks two and three, respectively, we see three and six C1’s in the second and
the third p-color combinations of pattern (2). This time (i.e., in the context of
generalization), let us focus on the position of the first color C1 (just because the
first comes first). The first positions of color C1 within pattern (2) guided by the
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triangular numbers follow the sequence 1, p + 1, 4p + 1, 10p + 1, 20p + 1, . . . ,
where the coefficients in p are the partial sums of consecutive triangular numbers;
namely, one (1) in p + 1, four (1 + 3) in 4p + 1, ten (1 + 3 + 6) in 10p + 1, and
so on. This observation can be proved easily by mathematical induction. Indeed,
assuming that the n-th coefficient in p in the sequence p+1, 4p+1, 10p+1, 20p+1,
. . . , is the n-th partial sum of consecutive triangular numbers,

∑n
k=1

1
2k(k+1), one

has to prove that adding the triangular number 1
2 (n + 1)(n + 2) in the transition

from the combination of rank n to the combination of rank n + 1 yields

n∑

k=1

k(k + 1)
2

+
(n + 1)(n + 2)

2
=

n+1∑

k=1

k(k + 1)
2

.

The last relation is obvious. Note that the n-th partial sum of triangular numbers
is represented by the third-degree polynomial in n as the n-th partial sum of any
quadratic sequence ak2+bk+c, k = 1, 2, 3, . . . , is the cubic polynomial in n. Indeed,
using the formulas 1+2+· · ·+n = 1

2n(n+1) and 12+22+· · ·+n2 = 1
6n(n+1)(2n+1),

yields

n∑

k=1

(ak2 + bk + c) = a

n∑

k=1

k2 + b

n∑

k=1

k + c

n∑

k=1

1

= a
n(n + 1)(2n + 1)

6
+ b

n(n + 1)
2

+ cn =
a

3
n3 + · · · .

Note that, so far, all activities were free from the use of technology and they
may be considered as TI activities. The next step requires rather complicated
symbolic computations including solving systems of four linear equations and find-
ing partial sums of polygonal numbers of arbitrary rank and side. While in the
pre-digital era such problems were solvable, though not by many students of math-
ematics, nowadays, in the true spirit of TITE problem solving, these computations
can be supported by Wolfram Alpha.

6. A TE part of problem-solving activities begins

Let fp(n, 3) describe the first position of color C1 in the n-th combination of
the p-color pattern guided by the triangular numbers. Then fp(n, 3) = an3 + bn2 +
cn+d, where the coefficients a, b, c, and d depend on p. In order to find these (four)
coefficients, one has to plug the first four values of n into fp(n, 3) and solve the
following system of four linear equations

a + b + c + d = 1, 27a + 9b + 3c + d = 1 + 4p,

8a + 4b + 2c + d = 1 + p, 64a + 16b + 4c + d = 1 + 10p.

Using Wolfram Alpha in solving the system of equations in a, b, c, and d, yields
a = p

6 , b = 0, c = −p
6 , d = 1. That is, fp(n, 3) = p

6 n2− p
6 n+1. As a TI alternative

to the use of Wolfram Alpha, one can note that fp(n, 3) =
(∑n

k=1
1
2k(k − 1)

)
p + 1
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and, therefore, using formulas mentioned at the end of the last section,

fp(n, 3) =
1
2

(
n∑

k=1

k2 −
n∑

k=1

k

)
p + 1 =

1
2

[
n(n + 1)(2n + 1)

6
− n(n + 1)

2

]
p + 1

=
p

6
n3 − p

6
n + 1.

One can check to see that generalization to fp(n, 3) is consistent with the
known special cases. Indeed, fp(1, 3) = 1, fp(2, 3) = p + 1, fp(3, 3) = 4p + 1,
fp(4, 3) = 10p + 1.

The next step is to use formula (1) and Wolfram Alpha in finding the partial
sums of polygonal numbers as shown in Figure 2. This yields the formula

(3)
n∑

k=1

P (k, m) =
1
6
n(n + 1)[m(n− 1)− 2n + 5].

Figure 2. Finding partial sums of m-gonal numbers using Wolfram Alpha.

Figure 3. Finding the values of x for the equations fp(n, m) = 1 + xp.

Formula (3) can be used to find a few coefficients in p similar to how they
were found in a TI fashion for triangular numbers. To this end, one can enter
into the input box of Wolfram Alpha the (three-component) expression “Table[
1
6n(n + 1)

(
(m(n − 1) − 2n + 5)

)
, {m, 3, 7}, {n, 1, 4}]”, in which, using Wolfram

programming code, the second and the third components of the command Table
are aimed at instructing the program to create a table of four n values, [1, 4], for
each of the five m values, [3, 7]. As shown in Figure 3, the Result line includes
five quadruples of integers each of which provides the first four coefficients in p for
each of the five pattern guides – triangular, square, pentagonal, hexagonal, and
heptagonal numbers. These coefficients will be used in developing special cases for
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the pattern guides towards the end of finding a formula for the general m-gonal
pattern guide.

7. Collecting data for special cases as a TE activity

In this section it will be demonstrated how Wolfram Alpha can be used to
develop the third degree polynomials in n that map n to the first position of the
first color in the p-color combination of rank n guided by the sequences of m-gonal
numbers (m = 4, 5, 6, 7). The special cases of these polynomials (along with the
case m = 3) will then be generalized, considering the generalization activity as a
TI part of problem solving.

To begin, let fp(n, 4) = an3 + bn2 + cn + d describe the first position of color
C1 in the n-th combination of the p-color pattern guided by square numbers, where,
once again, the coefficients a, b, c, and d depend on p. Using the second quadruple
generated by Wolfram Alpha in Figure 3, yields the system of equations

a + b + c + d = 1, 27a + 9b + 3c + d = 1 + 5p,

8a + 4b + 2c + d = 1 + p, 64a + 16b + 4c + d = 1 + 14p.

Once again, Wolfram Alpha provides the following solution: a = p
3 , b = −p

2 , c = p
6 ,

d = 1. That is, fp(n, 4) = p
3 n3 − p

2 n2 + p
6 n + 1.

Let fp(n, 5) = an3 + bn2 + cn + d describe the first position of color C1 in
the n-th combination of the p-color pattern guided by pentagonal numbers. Using
the third quadruple generated by Wolfram Alpha in Figure 3, yields the system of
equations

a + b + c + d = 1, 27a + 9b + 3c + d = 1 + 6p,

8a + 4b + 2c + d = 1 + p, 64a + 16b + 4c + d = 1 + 18p.

Wolfram Alpha provides the following solution: a = p
2 , b = −p, c = p

2 , d = 1. That
is, fp(n, 5) = p

2 n3 − pn2 + p
2 n + 1.

Let fp(n, 6) = an3 + bn2 + cn + d describe the first position of color C1 in the
n-th combination of the p-color pattern guided by hexagonal numbers. Then, using
the fourth quadruple generated by Wolfram Alpha in Figure 3, yields the system
of equations

a + b + c + d = 1, 27a + 9b + 3c + d = 1 + 7p,

8a + 4b + 2c + d = 1 + p, 64a + 16b + 4c + d = 1 + 22p.

Using Wolfram Alpha, the following solution follows: a = 2
3p, b = − 3

2p, c = 5
6p,

d = 1. That is, fp(n, 6) = 2p
3 n3 − 3p

2 n2 + 5p
6 n + 1.

Finally, let fp(n, 7) = an3 + bn2 + cn + d describe the first position of color
C1 in the n-th combination of the p-color pattern guided by heptagonal numbers.
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Then, using the fifth quadruple generated by Wolfram Alpha in Figure 3, yields
the system of equations

a + b + c + d = 1, 27a + 9b + 3c + d = 1 + 8p,

8a + 4b + 2c + d = 1 + p, 64a + 16b + 4c + d = 1 + 26p.

Using Wolfram Alpha, the following solution follows: a = 5
6p, b = −2p, c = 7

6p,
d = 1. That is, fp(n, 7) = 5p

6 n3 − 2pn2 + 7p
6 n + 1. As an aside note that in

order for generalization to take place, special cases have to be developed. But
generalizing from special cases through empirical induction would require the use
of mathematical induction.

8. TI part of the activities begins

In order to generalize to fp(n,m), all five functions found in the previous two
sections, namely,

fp(n, 3) =
p

6
n3 − p

6
n + 1, fp(n, 4) =

p

3
n3 − p

2
n2 +

p

6
n + 1,

fp(n, 5) =
p

2
n3 − pn2 +

p

2
n + 1, fp(n, 6) =

2p

3
n3 − 3p

2
n2 +

5p

6
n + 1,

fp(n, 7) =
5p

6
n3 − 2pn2 +

7p

6
n + 1

have to be jointly compared. The goal of such comparison is to find coefficients of
the cubic polynomial fp(n,m) = an3 + bn2 + cn + d as the functions of p and m.

Analyzing the coefficients of the above five functions in terms of their gener-
alization from the cases m = 3, 4, 5, 6, 7 to the general case of an m-gonal number,
the following technology-immune result can be derived

(4) fp(n,m) =
1
6
(m− 2)pn3 − 1

2
(m− 3)pn2 +

2m− 7
6

pn + 1.

Indeed, regardless of m, we have the free term d = 1. Furthermore, when m = 3
we have a = p

6 , when m = 4 we have a = p
3 , when m = 5 we have a = p

2 , when
m = 6 we have a = 2p

3 , and when m = 7 we have a = 5p
6 . One can see that the

values of the coefficient a are the (m− 2) multiples of p
6 .

Likewise, when m = 3 we have b = 0, when m = 4 we have b = −p
2 , when

m = 5 we have b = −p, when m = 6 we have b = − 3p
2 , and when m = 7 we have

b = −2p. One can see that the values of the coefficient b are the (3−m) multiples
of p

2 .
Finally, when m = 3 we have c = −p

6 , when m = 4 we have c = p
6 , when

m = 5 we have c = p
2 , when m = 6 we have c = 5p

6 , and when m = 7 we have
c = 7p

6 . One can see that the values of the coefficient c are the (2m− 7) multiples
of p

6 .
Formula (4) was developed through empirical induction which, lacking rigor,

may lead to erroneous generalization. A rigor requires proof by mathematical
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induction by the variable m that consists in demonstrating the transition from m
to m + 1 (the base clause m = 3 yields fp(n, 3) = p

6 n3− p
6 n + 1). To this end note

that the positions of the first C1’s in the p-color combinations of rank n guided, by
(m + 1)-gonal numbers and m-gonal numbers, respectively, differ by

p

n−1∑

i=1

[P (i,m + 1)− P (i,m)] =
p

2

n−1∑

i=1

[(m− 1)(i− 1) + 2− (m− 2)(i− 1)− 2]i

=
p

2

n−1∑

i=1

(i− 1)i =
p

2

[n−1∑

i=1

i2 −
n−1∑

i=1

i

]

=
p

2

[
(n− 1)n(2n− 1)

6
− (n− 1)n

2

]
=

p

6
n(n− 1)(n− 2).

That is, one has to make pn(n − 1)(n − 2)/6 steps in order to reach the first C1

in the p-color combination of rank n guided by (m + 1)-gonal numbers starting
from the first C1 in the p-color combination of rank n guided by m-gonal numbers.
Therefore, in order to prove formula (4) one has to show that in the course of the
transition from m to m+1 the relation fp(n, m+1)−fp(n, m) = pn(n−1)(n−2)/6
holds true. Indeed,

fp(n,m+1)− fp(n,m) =
pn3

6
− pn2

2
+

pn

3
=

p

6
n(n2− 3n+2) =

p

6
n(n− 1)(n− 2).

This completes the proof of formula (4).

Let gp(n,m) represent the function that maps n to the position of the last C1

in the p-color combination of rank n. Then, because there are [(m−2)(n−1)+2]n/2
of C1’s in this combination,

gp(n,m) = fp(n,m) +
(m− 2)(n− 1) + 2

2
n− 1

=
(m− 2)pn3

6
− (m− 3)pn2

2
+

(2m− 7)pn

6
+

m(n− 1)
2

− n + 2.

One can check to see that gp(3, 2) = 3p + 1, whence g2(3, 2) = 7 (cf. Figure 1).

Let hp(n,m) be a function that maps n to the position of the last Cp in the
n-th p-color combination. Then

hp(n,m) = fp(n+1, m)−1 =
1
6
(m−2)p(n+1)3−1

2
(m−3)p(n+1)2+

2m− 7
6

p(n+1).

One can check to see that hp(3, 3) = 64
6 p− 4

6 p = 10p – the number which is smaller
by one than the position of C1 in the p-color combination of rank four mentioned
above. Note that the correctness of formula (4) implies the correctness of formulas
for gp(n,m) and hp(n,m).
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9. Using TI results in support of TE activities

Formula (4) makes it possible to carry out the next step in developing TITE
activities. As was mentioned above, one goal of generalization is to assist in under-
standing and resolving specials cases. This agency of generalization was noted by
Pólya [14] in the pre-digital era. Yet the idea was in the possibility to parametrize
a problem situation, make a solution dependent on a parameter and then set the
needed value of the parameter in order to obtain the solution for a special case.
Nowadays, this parameter-extended agency of generalization can be entertained by
constructing an interactive computational environment in which two parameters, p
and m, can be taken into consideration and specific cases can be resolved by plug-
ging in their particular numeric values and watching for computational response of
the environment.

For example, one may consider a three-color pattern guided by square numbers
(the first two combinations of which look like

C1C2C3C1C1C1C1C2C2C2C2C3C3C3C3)

and ask the computer to provide information about the color of a sufficiently large
place. As shown in Figure 4, in such a pattern, the 1155-th position has color C3

(the number 3 in cell K3 of the spreadsheet). In this section, TI activities of the
previous section that led to generalization, will be used to support the creation of a
tool to carry out a purely TE activities. At the same time, new TI activities would
be needed before the TE part becomes available.

Figure 4. Generalization at work.

In order to create such a computational tool, one can use the values of m
and p as parameters and determine the color of the N -th position in the pattern
defined by those parameters. The environment shown in the spreadsheet of Figure
4 is organized as follows. Cell B2 is given name p and entered with the number of
colors; cell B4 is given name m and entered with the side of the polygonal numbers
that guide the pattern; cell D3 is given name N and entered with the position
number the color of which has to be determined. Next, column A beginning from
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cell A6 is filled with consecutive natural numbers starting from one. In columns
B and C the values of fp(n,m) and fp(n + 1,m) (the first positions of color C1

in the combinations of ranks n and n + 1, respectively) are defined. In columns
D and E the values of fp(n,m) and fp(n + 1, m) are compared with the value of
N and if fp(n,m) is smaller than or equal to N , the number zero (otherwise, one)
is displayed in column D and if fp(n + 1,m) is smaller than N , the number zero
(otherwise, one) is displayed in column E.

Consequently, in column F the numbers from columns D and E are added
and when the sum is equal to one (this could happen one time only), the number
1 is displayed, otherwise a cell is left blank. The next step is to display in cells
F3 and G3, respectively, the values of fp(n,m) and fp(n + 1, m) − 1 (the place
of the last Cp in the n-th combination) that are located in the same row as the
number 1. Such display can be done through the use of the spreadsheet function
LOOKUP which has three arguments: the number to be looked up (in our case,
the number 1), the range where a looked-up number is located, and the range
where a number to be displayed is located. Thus, in cells F3 and G3, respectively,
the spreadsheet functions =LOOKUP(1, F6:F100, B6:B100) and =LOOKUP(1,
F6:F100, C6:C100) − 1 are defined. The length of the n-th combination within
which the place N is located is displayed in cell H3 by calculating the difference
[fp(n + 1,m) − 1] − fp(n,m). The value N − fp(n, m) is calculated in cell I3 and
the ratio

r =
N − fp(n,m)

[fp(n + 1, m)− 1]− fp(n, m)

is calculated in cell J3. Finally, the number INT(rp) + 1, when N is not the last
position of the combination of rank n; i.e., N 6= fp(n + 1,m) − 1, otherwise, the
number INT(rp), is the color of the position of N in the pattern. For example,
in the case p = 2 and m = 3, as was mentioned above, the positions of color C1

follow the pattern 1, p + 1, 4p + 1, 10p + 1, 20p + 1, . . . ; that is, in the case p = 2
we have the sequence 1, 3, 9, 21, 41, . . . , so that the 23rd position has color C1.
As 23 is not the last position in a combination, we have r = 23−21

40−21 = 2
19 < 1 and

INT(rp) + 1 = INT(4/19) + 1 = 1 is the color number.
To explain how either the value of INT(rp) + 1 or INT(rp) provide the value

of color number, let N ∈ [fp(n,m), fp(n + 1,m) − 1] = [x0, xp]. Let us divide the
segment [x0, xp] into p equal parts by x0 < x1 < · · · < xi−1 < xi < · · · < xp. The
inclusion N ∈ [xi−1, xi], 1 6 i 6 p implies that the segment [xi−1, xi] is filled with

color Ci. The ratio r =
N − x0

xp − x0
, 0 6 r 6 1, represents the fraction of the segment

[x0, xp] that spans from x0 to N . Then

pr =
p(N − x0)
xp − x0

=
p(xi−1 + N − xi−1 − x0)

p(x1 − x0)
=

(i− 1)(x1 − x0) + N − xi−1

x1 − x0

= i− 1 +
N − xi−1

x1 − x0
= i− 1 + r1, 0 6 r1 6 1.

If N = xi then r1 = 1 and INT(pr) = i; that is, the N -th place has color Ci. If
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N 6= xi then 0 6 r1 < 1 and INT(pr) = i − 1 implying that i = INT(pr) + 1 and
the inclusion N ∈ [xi−1, xi] means that the position N has color Ci.

10. Conclusion

This paper was written as a reflection on a single episode from the author’s
experience working with elementary teacher candidates within a mathematics con-
tent and methods course in a master’s degree program for teachers of ages 6–11
students. The main emphasis of the paper was on the notion of TITE mathematics
curriculum which rises in importance with the growth in sophistication of modern
technological tools. The paper’s topics included three major contexts associated
with TITE problem solving: pedagogy, mathematics, and technology.

In the context of pedagogy, the paper underlined the significance of paying
attention to students’ ideas in the classroom and it asserted that one’s thinking
“outside the box” has potential for an extended mathematical discussion that bears
fruit. Instead of ignoring ideas that such thinking entails, its appreciation by ‘a
more knowledgeable other’ can lead to learning at a much higher level than it was
originally anticipated. This pedagogy is especially valuable for a mathematics class-
room of teacher candidates. In such a classroom, prospective teachers can learn
about inherent connectivity of mathematical concepts enabling a simple idea to
be used as springboard into the exploration of more complicated ideas. However,
using this springboard effectively requires from a teacher to possess intellectual
courage of entering an uncharted territory where a border between known and un-
known is quite elusive. Perhaps the most important application of this pedagogy to
mathematics teacher education is to prepare teacher candidates to answer students’
questions because answering and asking questions is the major vehicle of concep-
tual development. Once a question is answered and the answer is assimilated, a
new question is likely to be asked so that the learning process continues in the
solve-reflect-pose recursive mode of learning mathematics [17].

In the context of mathematics, the paper focused on the importance of general-
ization as a means for understanding special cases, for the development of new tools
of investigation, and for creating computational environments capable of problem
solving and problem posing. Learning mathematical generalization is important
for it provides “ready ascent from particular facts to generalizations and ready
descent from generalizations to particular facts” [15, p. 103]. At the same time,
generalization requires careful reasoning and understanding the difference between
empirical induction which is based on specific cases and mathematical induction
which provides generalization with a rigorous proof. It was shown how each step
towards generalization required a combination of TE and TI activities in the sense
that a TE activity requires a TI support and a TI activity can benefit from a TE
support.

In the context of technology, the paper demonstrated integrative power of two
disparate digital tools. Wolfram Alpha was shown as a tool capable of symbol-
ic computations that, in particular, facilitates access of all students to advanced
mathematics, a long-term program initiated at the end of the 20th century with
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the advent of computers into K-16 mathematics curricula [10]. A computer spread-
sheet was shown as an instrument created (from an artifact) through the activity
of generalization. According to the theory of instrumental genesis [16], the TE
part of this activity can be described as a process through which the spreadsheet
broadens the scope of utilization, and its TI part can be described as a process
through which a user of the spreadsheet develops intellectually. The construction
of such instruments for solving problems that are far beyond an original task which
was at the origin of this construction contributes to the pragmatic dimension of
commonly available tools integrated into the practice of the modern-day classroom
[18].

It is worth noting that Wolfram Alpha, unlike the spreadsheet, was shown as
a ready to be used instrument capable of solving multi-variable systems of linear
equations constructed through a TI process and the corresponding TE part re-
quired knowledge of what the instrument can do mathematically. One can say that
Wolfram Alpha was inserted between its user and mathematics in order for the lat-
ter to work. On the contrary, mathematics was inserted between the user and the
spreadsheet in order for the latter to work. From the instrumental perspective with
its origin in the seminal ideas by Vygotsky [20] about mediating cognitive processes
by technical devices and psychological tools, one can see an interesting relationship
between mathematics and technology. When technology is just an artifact, like a
spreadsheet, it is mathematics that turns it into an instrument to mediate problem
solving. When technology is an instrument, like Wolfram Alpha, such instruments
mediate the application of mathematical methods to problem solving. In that way,
a TITE mathematical problem solving may include multiple digital tools, both ar-
tifacts and instruments, with different relation to mathematics. This duality in
the order of positioning and using theoretical and technological knowledge in the
context of TITE activities appears to be an important pedagogical aspect of the
modern-day mathematical learning. Paying attention to students’ ideas makes the
learning student-centered and encourages creativity as the foundation of success
both within and outside mathematics.
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