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Abstract. We present an alternative proof for the existence of at least one quasi-
strict equilibrium in every bimatrix game. While Norde [Bimatrix games have quasi-
strict equilibria. Math Prog, 85, 35–49] uses Brouwer’s fixed point theorem, we employ
Kakutani’s fixed point theorem for multivalued maps, and make our proof shorter, thus
teachable in a couple of lecture talks. Besides our approach admits of natural economic
interpretations of some technicalities used in the proof. We also explain how we get
to our method of proof. In addition, it is remarked that it is possible to adopt a field
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1. Introduction

A quasi-strict equilibrium in noncooperative games is an equilibrium where
all the best pure strategies of each player is actually given a positive probability.
As such, quasi-strict equilibria, in a special form, originally appeared in zero-sum
games as those associated with essential strategies in Shapley, Karlin and Bohnen-
blust [20] and Bohnenblust, Karlin and Shapley [4]. These results were summarized
in Karlin [16, Theorem 3.1.1; pp. 64–67]. On the other hand Tucker [23, p. 11] not-
ed that his Theorem 3 on linear inequalities would be powerful enough to derive
the results of Bohnenblust, Karlin and Shapley as well as the minimax theorem of
von Neumann and Morgenstern [25, p. 153 (1953)].

Harsany [11] defined quasi-strong equilibrium for general noncooperative n-
person games. Later this has changed its name to quasi-strict equilibrium. Damme
then gave an example of three-player game in which no quasi-strict equilibrium
exists [7, p. 61]. Thus the problem was boiled down to whether every bimatrix
game has at least one quasi-equilibrium or not. In view of the participation of
only two players, it is curious that many years elapsed before Norde [18] finally
succeeded in proving the existence of quasi-strict equilibrium for bimatrix games.
In between there were contributions offering partial answers, notably by Jansen [14]
and Borm [6]. Norde’s paper was first publishes as a working paper in 1994, thus it
took five years for the article to be published for a wider access. It seems that the
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referees of Norde’s paper were not easily convinced about its publishability because
his proof is full of technicalities and indeed tough with 7 lemmata needed to reach
his theorem. Teachers of game theory have surely found it difficult to reproduce
Norde’s proof in their lecture course. And yet, since 1999, no simpler alternative
proof has been supplied in any web sites or journals. Our task in this article is
to provide a proof which is teachable to math students who gather to study game
theory. In so doing, we describe how to obtain a leading light in groping for a way
forward in our proof; that is, reviewing the proofs for the zero-sum case, which had
been done with no recourse to fixed point theorems, but with the help of theorems
on linear inequalities. We have realized it is better to use both Kakutani’s fixed
point theorem and Stiemke’s theorem on linear inequalities. In addition, some
crucial steps in our proof are explained in terms of economics, interpreting given
matrices as consisting of production processes in von Neumann’s model of economic
growth.

Our paper runs as follows. Section 2 explains our notation and preliminary
results, and Section 3 is devoted to a heuristic story about how to get to an alter-
native proof. The main proposition is given in Section 4, while Section 5 contains
an economic interpretation of some points in our proof. Section 6 gives a numerical
example, and the final section closes the paper with concluding remarks.

2. Notation and preliminary results

We first explain our notation, which more or less follows that of Jansen [14] and
of Norde [18]. Let m and n be natural numbers, Nm the set of natural numbers
{1, 2, . . . , m}, Rm be the m-dimensional real Euclidean space, and Rm

+ be the
nonnegative orthant of Rm. The i-th unit vector of Rm is denoted by ei, and
similarly the one in Rn. The symbol e stands for the vector whose elements are all
unity either in Rm or in Rn. The inner-product of two vectors, v and w in Rm, is
denoted by v′ · w, with a prime to a vector indicating transposition, or simply by
vw, and the premultiplication of a vector p ∈ Rm with an m×n matrix A is written
as p′ ·A. The postmultiplication of a vector q ∈ Rn with the matrix A is written as
A · q. To make expressions shorter, the transposition (′) and/or the inner product
symbol (·) are normally left out as pA or Aq, except when the contrast between
column and row vectors is desirable, or ample space is available in a line. The
symbol Sm stands for the (m− 1)-simplex, i.e., Sm ≡ {x | x ∈ Rm

+ ,
∑m

j=1 xj = 1}.
In vector comparison, the inequality x ≥ y means that the left-hand-side is not
less than the right-hand-side in each elementwise comparison; x > y means that
x ≥ y and x 6= y; x À y signifies that a strict inequality holds in each elementwise
comparison.

Bimatrix games and equilibrium points are defined next. Let A and B be two
m× n matrices. The two-person game in normal form (Sm, Sn, EA, EB) with

EA(p, q) ≡ pAq and EB(p, q) ≡ pBq

for each p ∈ Sm, q ∈ Sn, is called the m × n bimatrix game corresponding to the
ordered pair of matrices A and B and this game is denoted by (A,B). The matrices
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A and B are called the payoff matrices of player I and player II, respectively.
Similarly, EA(p, q) and EB(p, q) are called the payoff functions. The class of all
m×n bimatrix games is denoted by M2

m×n. A bimatrix game of the form (A,−A)
is also called a matrix game and is also denoted simply by A.

A pair of vectors (p∗, q∗) ∈ D ≡ Sm × Sn is called an equilibrium point of the
bimatrix game (A,B) if

p∗ ·A · q∗ = max
p∈Sm

p ·A · q∗ and p∗ ·B · q∗ = max
q∈Sn

p∗ ·B · q.

The set of all equilibrium points of (A,B), which is nonempty by a theorem of Nash
[17], will be denoted by EQ(A,B).

We also define the carriers of a vector and the sets of pure best strategies as:

C(p) ≡ {i | pi > 0};
C(q) ≡ {j | qj > 0}, and

B1(q) ≡ {i | eiAq = max
k∈Nm

ekAq};
B2(p) ≡ {j | pBej = max

l∈Nn

pBel}.

Note that two sets B1(q) and B2(p) are never empty. It is clear that (p, q) ∈
EQ(A, B) if and only if C(p) ⊂ B1(q) and C(q) ⊂ B2(p). A quasi-strict equilibrium
is obtained when C(p) = B1(q) and C(q) = B2(p).

We first state what we call Tucker’s key theorem [23, Theorem 3, p. 11], which
is slightly more general than the key theorem described in Good [9, p. 6].

Theorem 1. (Tucker’s key theorem) For a given real m×n matrix A, the two
inequality problems, (i) Aq ≥ 0 for q ∈ Sn, and (ii) p′ · A ≤ 0 for p ∈ Sm, possess
a pair of solutions q∗ ∈ Sn and p∗ ∈ Sm such that

Aq + p∗ À 0 and q∗′ − p∗′ ·A À 0.

For the proof of theorem, the reader is referred to Tucker [23, Theorem 3, p.
11] or Good [9, Theorem of Alternative (Sharpened), p. 11]. Fujimoto [8] contains
a simple proof of Tucker’s theorem using a minimization problem with a constraint.
(Tucker’s method of proof can handle the field of rationals, while Good’s cannot.
Thus Good made an apology that he assumed the field of reals ‘to gain much in
clarity and comprehension’ [9, p. 7].)

We need here an extension of Stiemke’s theorem [21], which can be derived
from Tucker’s key theorem with no trouble.

Theorem 2. (a generalization of Stiemke’s theorem) For a given real m × n
matrix A, the inequality system Aq ≥ 0 has a strictly positive solution q À 0 if and
only if the inequality system p′ ·A < 0 has no nonnegative solution p ≥ 0.

Our Theorem 2 is actually Corollary 3A in Tucker [23, p. 11], where the reader
can find a proof. The above extension of Stiemke’s theorem [21] is of a similar
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nature to an extension of Gordan’s theorem [10] due to Ville [24], which was used
by von Neumann-Morgenstern [25] to prove their minimax theorem. (A historical
sketch about this, together with an English translation of Ville’s paper, is given in
Ben-El-Mechaiekh-Dimand [5].)

Now we prove the existence of a saddle point, which is equivalent to the mini-
max theorem for zero-sum noncooperative games with a little more property con-
cerning the full use of eligible strategies.

Theorem 3. (the minimax theorem in a sharper form) For a given real m×n
matrix A, there exists a pair of q∗ ∈ Sn and p∗ ∈ Sm such that

p∗′ ·A · q ≤ p∗′ ·A · q∗ ≤ p′ ·A · q∗ for any q ∈ Sn and p ∈ Sm, and

p∗i > 0 when (A · q∗)i = v for i = 1, . . . ,m;

q∗j > 0 when (p∗′ ·A)j = v for j = 1, . . . , n,

where v ≡ p∗′ ·A · q∗, i.e., the value of the game.

Proof. By the minimax theorem, we know the existence of a pair, q∗ ∈ Sn and
p∗ ∈ Sm which has the saddle point property described in Theorem 3. Suppose
the value of game is v = 0, then there can be no q ∈ Sn such that Aq À 0,
nor p ∈ Sm such that −p′ · A À 0. In this case, our Theorem 1, i.e., Tucker’s
key theorem guarantees the existence of a solution pair as required in Theorem 3.
Next, suppose v 6= 0. We can subtract this value v from each entry of A, that
is, aij − v, and create a new matrix game whose value of game is zero. Then we
can use what has just been proved, and show the existence of a required pair for
this transformed game with v = 0. It is evident that this pair can also work as a
solution for the original game.

Theorem 3 can be found in few textbooks. One exception is Owen’s book
[19, p. 21], in which Theorem II.4.4 asserts that either player II has an optimal
strategy p∗ with p∗m > 0, or player I has an optimal strategy q∗ with (A · q∗)m > v.
Though this result is concerned with only one particular index m for p, we can
combine these strategies for i = 1 to m, and normalize the final vector, obtaining
our result here for p∗. The property of q∗ can be ascertained in a similar way.
While Theorem 3 has an important meaning in terms of economics as is explained
below in Section 5, it has been somewhat in oblivion among math teachers.

3. Solitaire matrix games or unimatrix games: a heuristic story

Our heuristic story starts with a solitaire matrix game, or a unimatrix game.
Let A be an m × n real matrix, and there is a single player who tries to find out
two vectors p ∈ Sm and q ∈ Sn sequentially to win. The rule is like this. First the
player chooses a p ∈ Sm to obtain a vector pA, and recognizes the set of entries
which attain the minimum value, i.e.,

Min(p) ≡ {j | pAej = min
l∈Nn

pAel}.
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Then in the next step, the player is allowed to choose q ∈ Sn whose carrier is
included in Min(p). Finally the player gets

B(q) ≡ {i | eiAq = max
k∈Nm

ekAq}.

If C(p) = B(q), i..e., a sort of quasi-strict equilibrium pair of choices, the player is
declared to have won. This is a simple solitaire game, but actually is a disguised
form of a minimax game between two players with one additional element of quasi-
strictness. More concretely, suppose that m = 3, n = 2, and

A ≡


−4 2
2 −1
−1 −1


 .

When the player chooses at the beginning p = (1, 2, 0)′, p′ · A = (0, 0), thus both
columns are eligible. When the player selects q = (1, 2)′, then A · q = (0, 0,−3)′.
Hence C(p) = B(q) = {1, 2}, making the player the winner. The reader notices
that winning choices are in fact those solutions described in Tucker’s theorem on
inequalities.

Hence, the above solitaire game is mathematically simple, and can be treated
within college algebra, with its central piece being Tucker’s theorem. Now, we
change the rules of the above game in only one place as

Max(p) ≡ {j | pAej = max
l∈Nn

pAel}.

That is, in the second step, the player is allowed to choose q ∈ Sn whose carrier is
included in Max(p) in place of Min(p). In the case of above numerical example,
we can easily find two pairs of solutions, either p = (1, 0, 0)′ and q = (0, 1) with
C(p) = B(q) = {1}, or p = (0, 1, 0)′ and q = (1, 0) with C(p) = B(q) = {2}. The
problem is that we cannot prove the existence of a winning strategy with the help
of college algebra; we have to depend on Norde [18]. We can employ Norde’s proof
because the latter solitaire game can be viewed as a special bimatrix game in which
two payoff matrices are the same A, while the former game as a bimatrix game
where two matrices are A and −A.

Now we proceed to explain how to discover an easier method to prove the
existence of quasi-strict equilibrium for bimatrix games. We have seen that the ex-
istence can be shown in a simple manner for bimatrix games when two matrices are
A and −A, i.e., a zero-sum game, thanks to Tucker’s theorem and its derivative, a
sharper form of the well known minimax theorem. In an equilibrium for a zero-sum
game, there exist two constraints on the choice of the strategies p and q through A:

C(p) ⊂ B1(q) ≡ {i | eiAq = max
k∈Nm

ekAq};
C(q) ⊂ B2(p) ≡ {j | pBej = max

l∈Nn

p(−A)el}
= {j | pBej = min

l∈Nn

pAel}
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Suppose that the value of this game is zero, then these constraints entail the re-
quirements at an equilibrium

Aq∗ ≥ 0;

p∗A ≤ 0.

This reminds us of the inequalities appearing in Tucker’s theorem. Thus, it is
possible to apply Theorem 3 above, a sharper form of the minimax theorem. For
our problem, i.e., the existence of a quasi-strict equilibrium, we notice that we had
better modify a mapping of choosing strategies from D ≡ Sm × Sn into itself so
that we may have more constraints on the choice of strategies and Theorem 2 can
be employed to guarantee the required conditions C(p) = B1(q) and C(q) = B2(p),
and a fixed point theorem can still be applied after the modification.

4. Our proof of the existence of a quasi-strict equilibrium

We state our proposition.

Proposition. For a bimatrix game (A, B)∈ M2
m×n, there exists at least one

quasi-strict equilibrium.

Proof. For a pair of vectors (p, q) ∈ D ≡ Sm×Sn, we define two more symbols,

Z(p; q) ≡ {i | pi = 0} ∩B1(q); Z(q; p) ≡ {j | qj = 0} ∩B2(p).

All we have to show is that there exists a Nash equilibrium (p∗, q∗) ∈ D in which
the sets Z(p∗; q∗) and Z(q∗; p∗) are empty. As a routine procedure, we consider a
multivalued mapping f from D into itself as follows: for (p◦, q◦) ∈ D,

f(p◦, q◦) ≡ ({p ∈ Sm | pAq◦ = max
u∈Sm

uAq◦}, {q ∈ Sn | p◦Bq = max
v∈Sn

p◦Bv}).

By Berge’s maximum theorem [3, p. 116], [22, p. 235], this map f is upper semicon-
tinuous, and the image set f(p◦, q◦) is convex. Therefore, Kakutani’s fixed point
theorem [15] assures us of the existence of Nash equilibrium EQ(A,B).

Althought there may be infinitely many Nash equilibria, we have only a finite
number of types C(p∗), C(q∗), B1(q∗), and B2(p∗) for (p∗, q∗) ∈ EQ(A,B). Further
we define symbols

m′ ≡ #(B1(q∗)), n′ ≡ #(B2(p∗)), u∗ ≡ p∗Aq∗, and v∗ ≡ p∗Bq∗,

where #() signifies the number of elements in a given set. Now we take up a
particular pair B1(q∗) and B2(p∗), corresponding to a Nash equilibrium (p∗, q∗),
together with two matrices A(p∗, q∗) and B(p∗, q∗), which are composed of the rows
of A and B in B1(q∗) and the columns in B2(p∗), respectively. Further we form
the new matrices as

A◦(p∗, q∗) ≡ A(p∗, q∗)− u∗E and B◦(p∗, q∗) ≡ B(p∗, q∗)− v∗E,
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where E is the m′ × n′ matrix whose elements are all unity. That is, we subtract
u∗ from each entry of the matrix A(p∗, q∗), and v∗ from B(p∗, q∗).

Now we examine whether there exists a q ∈ R2n′
+ such that

(1) (A◦(p∗, q∗), B◦(p∗, q∗)) q < 0.

Note that the dimension of q is 2n′, and the two matrices, A◦(p∗, q∗) and B◦(p∗, q∗),
are juxtaposed horizontally to create an m′ × 2n′ matrix. It is evident that
an elementwise strict inequality in (1) can take place only in an index which is
in Z(p∗; q∗). Therefore when Z(p∗; q∗) is empty, there can be no q which sat-
isfies the inequality (1). Suppose there is only one index i ∈ Z(p∗; q∗), i.e.,
(A◦(p∗, q∗), B◦(p∗, q∗)) · q)i < u∗. In this case, we modify the map f globally
by reducing the codomain D to D′ ≡ {Sm ∩ {p ∈ Rm | pi ≥ ε}} × Sn, where
(1/m) > ε > 0. As the codomain shrinks, we modify the multivalued map f as
follows.

Let a point in an image of f(p◦, q◦) be (p′, q′). If (p′, q′) ∈ D′, then no change
is required; otherwise we set p′i = ε with the other entries of p decreased proportion-
ately so that the modified vector p′ can stay in D′. When there are two or more
strict inequalities involved, we modify f in a similar manner, i.e., those entries
are unchanged or set at ε depending upon whether they are not less than or less
than ε, and the remaining ones decreased proportionately. Next we do the same
examination on the existence of a p ∈ S2m′

such that

(2) p′ ·
(

A◦(p∗, q∗)
B◦(p∗, q∗)

)
< 0.

This time, the dimension of p is 2m′, and the two matrices, A◦(p∗, q∗) and
B◦(p∗, q∗), are juxtaposed vertically to create an 2m′ × n′ matrix. If there is
one p with the maximum number of inequalities in (2), we reduce, this time, the
codomain on the Sn side in a similar way as is explained for q, i.e., when the j-
th elementwise comparison shows a strict inequality in (2), we set qj ≥ δ, where
(1/n) > δ > 0, thus reducing the codomain still further. It should be noted that
the reduction of the codomain might produce a new Nash equilibrium; in this case,
we continue to conduct the same possible modification of the map f . This opera-
tion ends within a finite number of trials, because there exists only a finite number
of types C(p∗), C(q∗), B1(q∗), and B2(p∗) for a whole set of possible equilibria,
either original or created ones. In plain English, our modification of the map f
is to remove those Nash equilibria which are not quasi-strict from the set of fixed
point of the modified f . This can be observed from what follows in this proof, and
a numerical example in Section 6.

Since the above modification of f is conducted globally, i.e., not piece by
piece, or neighbourhood by neighbourhood, the map after modification is still upper
semicontinuous, and image sets always remain convex thanks to linearity involved;
thus we can use Kakutani’s fixed point theorem to secure the existence of at least
one fixed point (p∗, q∗). If Z(p∗; q∗) and Z(q∗; p∗) are both empty, this pair (p∗, q∗)
gives a quasi-strict equilibrium. Suppose that neither Z(p∗; q∗) nor Z(q∗; p∗) is
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empty. Because of our modification of the map f , there exists no q ∈ S2n′ nor p ∈
S2m′

for which the above inequalities (1) and (2) hold, respectively. By Theorem
2 in Section 2, there exist p† À 0 and q† À 0 such that p† ∈ Sm′

and q† ∈ Sn′ ,

p†′ · (A◦(p∗, q∗), B◦(p∗, q∗)) ≥ 0 and(
A◦(p∗, q∗)
B◦(p∗, q∗)

)
· q† ≤ 0.

Since p† À 0 and q† À 0, the above inequality should hold as equalities, i.e.,

p†′ · (A◦(p∗, q∗), B◦(p∗, q∗)) = 0 and(
A◦(p∗, q∗)
B◦(p∗, q∗)

)
· q† = 0.

Now we create a vector p†∗ ∈ Sm from p† by setting zero to its entries outside of
B1(q∗), and create a vector q†∗ ∈ Sm from q† in the same manner by setting zero
to its entries outside of B2(p∗). It is easy then to recognize that a pair of vectors

((p∗ + η · p†∗)/ ∥∥p∗ + η · p†∗∥∥ , (q∗ + η · q†∗)/ ∥∥q∗ + η · q†∗∥∥),

where η is a positive scalar so small that no disturbance is made to the best choice
set B1(q∗) and B2(p∗) and ‖·‖ stands for the sum norm, is indeed a quasi-strict
equilibrium.

The other cases in which either of the two, Z(p∗; q∗) and Z(q∗; p∗), is empty,
can similarly be dealt with.

5. Economic interpretation

We had better give a brief economic interpretation to our modification of the
mapping used in the previous section so that the reader can firmly remember the
point. A von Neumann growth model in von Neumann [26] is adopted here. The
matrix A is understood as a set of production processes with its columns as pro-
duction processes, while the rows representing goods and services (commodities for
short, below); negative entries mean inputs, and positive ones outputs. Thus, there
are m commodities, and n production processes. As player I chooses p ∈ Sm, player
II tries to maximize pAq by selecting q ∈ Sn. When we regard p as a price vector,
the product pA shows a row-vector of profits of available processes. The symbol
B2(p) stands for the set of processes which realize the maximum profits under a
price vector p. In a symmetrical way, and not a dual way, when player II chooses
q ∈ Sn, player I tries to maximize pAq by selecting p ∈ Sm. Let us regard q as
an activity level vector, the product Aq shows a column-vector of net outputs of
various commodities. Then the symbol B1(q) is the set of commodities which enjoy
the maximum net outputs under an activity level vector q. Now we can see the
meaning of the condition (1), i.e., the existence of q ∈ S2n′ such that the inequality
(1) holds for modifying the map f in the preceding section. The matrices A(p∗, q∗)
and B(p∗, q∗) under a Nash equilibrium (p∗, q∗) is composed of those processes and
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commodities which realize the maximum by respective criteria. The inequality (1)
tells us that there is an activity vector operating upon those optimal processes,
and producing less than the optimal levels in one or more commodities, that is,
supplies less than the maximum quantities possible. Our modification should des-
ignate those commodities in undersupply as having a positive price at ε > 0, and
this in a global sense.

One important implication brought by the existence of a quasi-strict equilib-
rium in terms of economics is that this gives an assurance of equality among those
who have a stake in one of the production processes with the maximum profits. All
the eligible production processes with the maximum benefit can actually be em-
ployed with a positive probability. This sense of equality may be of vital importance
to the players who participate in certain types of economic games.

The reader is referred to Howe [12] for a simple and elegant proof of the
existence of growth equilibrium in a von Neumann model; his proof uses Tucker’s
key theorem.

6. A numerical example

It is helpful to include a numerical example borrowed from Norde [18, p. 37].
We intentionally use some symbols appearing in our proof above for easier compar-
isons. Let the given two matrices be:

A ≡


−1 2 1
1 0 0
0 1 1


 , B ≡




1 −1 0
0 2 1
0 1 1


 .

A pair of vectors, p∗ = (1/2, 1/2, 0)′ and q∗ = (1/2, 1/2, 0)′, are a Nash equilibrium,
but not quasi-strict, because C(p∗) = C(q∗) = {1, 2}, while B1(q∗) = B2(p∗) =
{1, 2, 3}, as one can easily calculate. We can also calculate to have u∗ = v∗ = 1/2.
In this Nash equilibrium, we can find a vector q = (2, 1, 1, 3, 1, 0)′/8, which will
yields

(A◦(p∗, q∗), B◦(p∗, q∗)) · 8 · q

=



−3/2 3/2 1/2 1/2 −3/2 −1/2
1/2 −1/2 −1/2 −1/2 3/2 1/2
−1/2 1/2 1/2 −1/2 1/2 1/2







2
1
1
3
1
0




=



−1
0
−1


 .

Thus, p∗1 and p∗3 should be made positive. On the other hand, we can find a vector
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p = (1, 3, 0, 0, 0, 0)/4 such that

4 · p′ ·
(

A◦(p∗, q∗)
B◦(p∗, q∗)

)
= ( 1, 3, 0, 0, 0, 0 )




−3/2 3/2 1/2
1/2 −1/2 −1/2
−1/2 1/2 1/2
1/2 −3/2 −1/2
−1/2 3/2 1/2
−1/2 1/2 1/2




= ( 0, 0, −1 ) .

Thus, q∗3 should be made positive. Actually we know, from Fig. 1 of Norde [18,
p. 37], a quasi-strict equilibrium is given, e.g., as p†∗ = (1/3, 0, 2/3)′ and q†∗ =
(0, 0, 1)′.

7. Concluding remarks

5.1. Use of fixed point theorems
Fixed point theorems may be too advanced for students in upper secondary

schools and in junior levels of universities. Their meanings or contents are, however,
easily grasped, and quite ‘exciting’ for many math oriented students. When they
are successfully utilized in proving seemingly unrelated propositions, the sensation
may get ‘spine-tingling’. We math teachers often ask students to try to discover
proofs different from those presented in class or in textbooks. In so doing, we
may occasionally suggest the use of one of fixed point theorems. Through these
exercises, students get to know when fixed point theorems are applicable, or why
they cannot be employed in certain cases.

5.2. Tucker’s theorem as a fixed point theorem
Tucker’s theorem can be restated as a fixed point theorem. Let A be a given

m × n real matrix, and we consider a multivalued mapping f from D ≡ Sm × Sn

into itself defined as:

f : (x◦, y◦) ∈ D

→ (relint{x | x′Ay◦ = max
x∈Sm

·xAy◦}, relint{y | x◦′Ay = min
y∈Sn

·x◦′Ay}).

Here, the symbol relint stands for the relative interior of the set which follows it.
Tucker’s theorem asserts that the above map f has a fixed point in D. Norde’s
theorem [18] on the existence of quasi-strict equilibrium for bimatrix games can
also be rephrased as a fixed point theorem of this type.

5.3. Rational numbers
So far we have considered real numbers only. On reflection, however, we can

find equilibrium strategies at the end by solving a system of simultaneous linear
equations, whether it is just determined or underdetermined. Thus, thanks to
Cramer’s rule, it is clear that we can have equilibrium strategies consisting of
rational numbers so long as given data are rational numbers. This remains true
when we have a pair of solution vectors within a relative interior of an equilibrium
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set, though there are uncountable solutions around it made of irrational numbers.
Gordan [10] already had in mind the solvability in a filed other than reals. Tucker
[23, p. 5] mentioned the applicability of his method in any ordered field. Tucker’s
claim is in fact carried out in a more powerful way by Bartl [1, 2], which was
expounded in a broader context by Jaćimović [13]. It is well known that the Fourier-
Motzkin elimination works within rationals. In spite of these facts, it is interesting
to note that rational bimatrix games can produce rational solutions though we may
depend upon fixed point theorems to prove the existence of solutions.

Thus, when looked at as a fixed point theorem, we can deal with A with its
all entries consisting of rational numbers, and the guaranteed existence of a fixed
point is within the field of rational numbers. This feat is made possible, helped by
the linearity brought in through the use of matrices and linear operations by them.
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