A SIMPLE PROOF OF THE CHANGE OF VARIABLE THEOREM FOR THE RIEMANN INTEGRAL

Haryono Tandra

Abstract. In this note, we present a simple proof of the change of variable theorem for the Riemann integral. The proof gives an alternate approach of how a class material on this topic can sistematically be carried out through a simple, succinct, and convenient way.

MathEduc Subject Classification: 155 MSC Subject Classification: 97150 Key words and phrases: Change of variable theorem; Riemann integral.

Despite the intricacies, most authors use elementary approaches to prove the change of variable theorem for the Riemann integral. Some of the proofs, either for the whole or a part of the theorem, can be seen, e.g. in [1,4–8,10–12] (in [1], Bagby even demonstrated that a non-measure-theoretic argument works for a part of the theorem for functions taking values in a Banach space). In this note, by contrast, we demonstrate a simple method that gives a less elementary, yet much simpler, proof of the theorem.

Recall that a real-valued function f on $X \subseteq \mathbb{R}$ is said to be Lipschitz if there exists a positive number M such that for all $s, t \in X$, $|f(s) - f(t)| \leq M|s - t|$. A set A of real numbers is said to have a measure zero if for any $\epsilon > 0$ there exists a countable collection $\{(u_n, v_n)\}_{n=1}^{\infty}$ of open intervals such that $A \subseteq \bigcup_{n=1}^{\infty} (u_n, v_n)$ and $\sum_{n=1}^{\infty} (v_n - u_n) < \epsilon$. Two functions f and g on [a, b] are said to be equal almost everywhere, which we write f = g a.e., if the set $\{x \in [a, b] : f(x) \neq g(x)\}$ is of measure 0.

We assume that all integrability are in the Riemann sense. We shall prove the theorem by resorting to the following well-known properties:

- (i) [Fundamental Theorem of Calculus of the First Form] If $F: [a, b] \to \mathbb{R}$ is Lipschitz and F' = f a.e., for some integrable function f on [a, b], then $\int_a^b f(x) dx = F(b) - F(a)$ (see [3, Theorem 2]).
- (ii) [Fundamental Theorem of Calculus of the Second Form] If $h: [a, b] \to \mathbb{R}$ is integrable and is continuous at x_0 , then the function $\psi(x) := \int_a^x h(t) dt$, $x \in [a, b]$, is differentiable at x_0 with $\psi'(x_0) = h(x_0)$ (see, e.g. in [2, Theorem 7.3.5]).
- (iii) [Lebesgue Criterion for Riemann Integrability] A function f is integrable on [a, b] if and only if f is bounded and continuous a.e. on [a, b].

(iv) Given a function $F: [a, b] \to \mathbb{R}$ having a finite derivative F' on $X \subseteq [a, b]$, then F(X) is of measure 0 if and only if F' = 0 a.e. on X (see, e.g. in [9, p. 515]).

Note that, as in the proof of Theorem 11 of [10], here we also use property (iv) but with a different presentation. Unlike his argument there which partly relies on the change of variable theorem for Lebesgue integral (whose proof is derived from that of the Henstock-Kurzweil integral), ours here entirely relies within the Riemann theory. This provides an alternate approach of how a teaching material on this topic can sistematically be presented in a simple, succinct, and convenient way.

One usual form of the change of variable theorem for the Riemann integral is as follows.

THEOREM 1. Let f be Riemann integrable on [a, b], and for some $c \in [a, b]$, $F(x) := \int_{c}^{x} f(t) dt$, $x \in [a, b]$. Then $(g \circ F)f$ is Riemann integrable on [a, b] if and only if g is Riemann integrable on J := F([a, b]). In either case we have

$$\int_{a}^{b} g(F(x))f(x) \, dx = \int_{F(a)}^{F(b)} g(y) \, dy.$$

First notice that properties (i), (ii), and (iii), along with the additivity of integrals over subintervals, give the following fact: given an integrable function f on [a, b], then a function F on [a, b] is Lipschitz and F' = f a.e. if and only if, for some constant $c \in [a, b]$, $F(x) = \int_c^x f(t) dt$. The change of variable theorem can then also be stated as follows.

THEOREM 2. Suppose that $F: [a, b] \to \mathbb{R}$ is Lipschitz, F' = f a.e. for some Riemann integrable f on [a, b], and $g: f([a, b]) \to \mathbb{R}$ is bounded. Then $(g \circ F)f$ is Riemann integrable on [a, b] if and only if g is Riemann integrable on J := F([a, b]). In either case we have

$$\int_{a}^{b} g(F(x))f(x) \, dx = \int_{F(a)}^{F(b)} g(y) \, dy.$$

We need the following lemma to prove Theorem 2.

LEMMA 3. Let F and f be as in Theorem 2, and

$$A := \{ x \in [a, b] : f \text{ is continuous at } x \text{ and } F'(x) = f(x) \}.$$

Then for any $x \in A$, $(g \circ F)f$ is continuous at x if and only if f(x) = 0 or g is continuous at F(x).

Proof. Let $x \in A$. We first show part (\Rightarrow) . Suppose that $(g \circ F)f$ is continuous at x and $f(x) \neq 0$. We wish to show that g is continuous at F(x). Since f is continuous at x, there exists a subinterval [c, d] on which x is an interior point, $|f| \geq \delta$ for some $\delta > 0$, and f has the same sign. Since by property (i),

 $F(z_1) - F(z_2) = \int_{z_1}^{z_2} f(x) dx$, it follows that $|F(z_1) - F(z_2)| \ge \delta |z_2 - z_1|$, for all $z_1, z_2 \in [c, d]$. This implies that F is one-to-one on [c, d]. Since $(g \circ F)f$ and f are both continuous at x, and $f(x) \ne 0$, it follows from the property for the limit of a quotient that $\lim_{z \to x} g(F(z)) = g(F(x))$. Write y = F(z), for any $z \in [c, d]$. Since $F|_{[c,d]}$ is one-to-one, it follows that $y \to F(x)$ if and only if $z \to x$, and hence

$$\lim_{y \to F(x)} g(y) = \lim_{z \to x} g(F(z)) = g(F(x)).$$

Thus g is continuous at F(x). For part (\Leftarrow) , if f(x) = 0, as f is continuous at x and g is bounded, it follows from the squeeze principle that $(g \circ F)f$ is continuous at x. Also, if g is continuous at F(x), since F is continuous at x, it follows that $g \circ F$ is continuous at x, and therefore since f is continuous at x, while noting the property for the limit of a product, we conclude that $(g \circ F)f$ is continuous at x.

Proof of Theorem 2. Let A be as in Lemma 3, $B := \{x \in [a, b] : f(x) \neq 0\}$ and

$$C := \{x \in [a, b] : g \text{ is discontinuous at } F(x)\}.$$

Since f is integrable and F' = f a.e., it follows from property (iii) that $[a, b] \setminus A$ is of measure 0. Also, in view of property (iii), g is integrable on J if and only if F(C) is of measure 0. These facts, along with Lemma 3 and property (iv), gives

(1)
$$(g \circ F)f$$
 is continuous a.e. on $[a, b] \iff A \cap (B \cap C)$ is of measure 0
 $\iff B \cap C$ is of measure 0
 $\iff F' = f = 0$ a.e. on C
 $\iff F(C)$ is of measure 0
 $\iff g$ is continuous a.e. on J .

This proves the first part of the theorem. Suppose now $(g \circ F)f$ and g are both integrable, i.e. bounded and continuous a.e. by property (iii). Let

$$\phi(x) := \int_{a}^{x} g(F(t))f(t) dt$$
 and $\theta(x) := \int_{F(a)}^{F(x)} g(y) dy$ $(x \in [a, b]).$

Then $\phi' = (g \circ F)f$ a.e. by property (ii). Since g is bounded, $\theta' = 0 = (g \circ F)f$ on $[a, b] \setminus B$. By the chain rule for derivatives, $\theta' = (g \circ F)f$ on $B \setminus C$. Since $B \cap C$ is of measure 0 by (1), it follows that $\theta' = (g \circ F)f$ a.e. Thus $\phi' = (g \circ F)f = \theta'$ a.e. Since ϕ and θ are both Lipschitz, it follows from property (i) that $\phi(b) = \int_a^b g(F(t))f(t) dt = \theta(b)$.

REFERENCES

- R. J. Bagby, The substitution theorem for Riemann integrals, Real Anal. Exchange 27 (2001/02), 309–314.
- [2] R. G. Bartle, D. R. Sherbert, Introduction to Real Analysis, John Wiley & Sons, Inc., New York, 2000.
- [3] M. W. Botsko, A fundamental theorem of calculus that applies for all Riemann integrable functions, Math. Mag. 64 (1991), 347–348.

- [4] R. O. Davies, An elementary proof of the theorem on change of variable in Riemann integration, Math. Gaz. 45 (1961), 23–25.
- [5] H. Kestelman, Change of variable in Riemann integration, Math. Gaz. 45 (1961), 17–23.
- [6] J. Navrátil, A note on the theorem on change of variable in a Riemann integral, (Czech. English summary), Časopis Pěst. Mat. 106 (1981), 79–83.
- [7] D. Preiss and J. Uher, A remark on the subtitution for the Riemann integral, Časopis Pěst. Mat. 95 (1970), 345–347.
- [8] D. N. Sarkhel and R. Výborný, A change of variables theorem for the Riemann integral, Real Anal. Exchange 22 (1996-97), 390–395.
- [9] J. B. Serrin, D. E. Varberg, A general chain rule for derivatives and the change of variables formula for the Lebesgue integral, Amer. Math. Monthly 76 (1969), 514–520.
- [10] H. Tandra, A new proof of the change of variable theorem for the Riemann integral, Amer. Math. Monthly (forthcoming).
- [11] B. S. Thomson, On Riemann sums, Real Anal. Exchange 37 (2011/12), 1-22.
- [12] D. E. Varberg, The change of variables formula for Riemann integrals, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 12 (1968), 239–240.

E-mail: haryono.tandra@yahoo.com