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Abstract. In this article we introduce one of the most frequently encountered
sequences in mathematics, the sequence of Catalan numbers. The numerous and various
occurrences and applications in combinatorial problems as well as their relations with
other famous numerical sequences make Catalan numbers very suitable for creative
teaching of mathematics at all levels.
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1. Introduction

We start with a brief historical overview of the exciting mathematical back-
ground of Catalan numbers. An interested reader may refer to the article [5]. The
recent discovery by Luo Jianjin in 1988 addressed the first appearance of Cata-
lan numbers to Chinese mathematician Ming Antu (c. 1692–c. 1763) who wrote
a book in 1731 which included some trigonometric expansions involving Catalan
numbers [4]. Leonard Euler (1707–1783) in his letter from 1751 to Christian Gold-
bach (1690–1764) defines Catalan numbers Cn as the numbers of triangulations of
(n+2)-gon and finds the generating function for these numbers. Another correspon-
dent of Euler was Johann Segner (1704–1777) who found the recurrence relation
for Catalan numbers. In 1838 Eugene Catalan (1814–1894) studied the problem of
different parenthesizations of n factors. Arthur Cayley (1821–1895) counted planar
trees in 1859 by using the generating function method. Despite their omnipresence,
the Catalan numbers have been named recently and the wide adoption of the name
begins in early 1970’s.

Richard Stanley, the leading modern combinatorialist, in his famous book Enu-
merative Combinatorics [6] provided a list of 66 combinatorial interpretations of
Catalan numbers. This collection has been published recently in a separate mono-
graph [7]. In a 2008 interview [1], he confessed that Catalan numbers are his favorite
number sequence. Another extensive monograph on Catalan numbers is [3].

The Catalan numbers are determined by

(1.1) Cn =
1

n + 1

(
2n

n

)
, n = 0, 1, 2, . . . .
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The first members of the sequence {Cn}n≥0 are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4869, 16796, 58786, 208012, . . .

The Catalan sequence is numbered by A000108 in the Neil Sloan’s On-Line Ency-
clopedia of Integer Sequences (OEIS) as probably its longest entry.

In this paper we present the major combinatorial interpretations of Catalan
numbers. The choice is arbitrary and depends on space and preference of the
author. The paper is only an invitation to further study this subject and may serve
as a starting point for own research. In Section 2 we count binary trees and derive
the major number theoretic properties. We show the relation of Catalan numbers
to Fibonacci sequence and Chebyshev polynomials. In Section 3 we count binary
terms and introduce Tamari order on the set of binary trees. We introduce the
special convex polytope called associahedron whose vertices are Catalan objects.
Section 4 includes more examples on combinatorial counting: triangulations of
convex polygon, upper-diagonal walking and ballot problem and pattern avoiding
problems for permutations.

2. Binary trees and number theoretic properties

In Graph Theory, a tree is a simple graph with no cycles. The nodes of a tree
which are incident to a unique edge are called leaves, the remaining nodes are called
internal nodes. The rooted tree is a tree with a distinguished node called the root.
Any rooted tree gives a partial order on the set of nodes by u ≤ v if u lies on the
unique path from v to the root. A tree is called a full binary tree if all internal
nodes including root have exactly two successors. A binary tree is a planar tree if it
is embedded in the plane, so the ordering of the successors of the internal nodes are
given from left to right. Let T be the class of full planar rooted binary trees graded
by the number of internal nodes T =

⊔
n∈N Tn. For the sake of shortness, we will

simply call the elements T ∈ T the binary trees. There is a binary operation • on
the set T that associates to any trees T1 and T2 the rooted tree •(T1, T2) obtained
by grafting the roots of T1 and T2 on a common new root. The grafting operation
• is not commutative since it depends on the order of factors. The class T may be
defined recursively by

(i) T0 = {•}
(ii) If T1 ∈ Tn1 and T2 ∈ Tn2 then •(T1, T2) ∈ Tn1+n2+1.

Define the generating function

(2.1) C(x) =
∑

T∈T
x|T |.

Since for n ≥ 1 any binary tree T ∈ Tn is of the form T = •(T1, T2), we have
∑

T∈T
x|T | = 1 +

∑

T1,T2∈T
x|•(T1,T2)| = 1 + x

∑

T1∈T
x|T1|

∑

T2∈T
x|T2|.
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Fig. 1. Binary trees with n ≤ 3 internal nodes

Therefore, the function C(x) satisfies functional relation

(2.2) C(x) = 1 + xC(x)2.

Consequently, since C(0) = 0, we obtain

C(x) =
1−√1− 4x

2x
.

The expansion of the square root term into a power series gives

C(x) =
1
2x

[
1−

∞∑
n=0

(
1/2
n

)
(−4x)n

]
,

which by a simple calculation leads to

C(x) =
∞∑

n=0

1
n + 1

(
2n

n

)
xn.

According to (2.1), we obtain that the numbers Cn = |Tn| of binary trees T ∈ Tn

are Catalan numbers (1.1).
From the functional relation (2.2) and Cauchy product formula for power series,

we obtain ∞∑
n=0

Cnxn = 1 +
∞∑

n=0

(
∑

i+j=n

CiCj)xn+1,

which implies the recurrence relation for Catalan numbers

(2.3) Cn =
n−1∑

i=0

CiCn−i−1, C0 = C1 = 1.

Let Ln be a path graph on n nodes, see Figure 2. Define the adjacency matrix
An = (ai,j)n×n by ai,j = 1 if (i, j) is the edge of Ln, and ai,j = 0 otherwise. Let
qn(u) be the characteristic polynomial

qn(u) = det(uE −A).
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Fig. 2. Path graph Ln

By expanding the determinant on elements of the first row we obtain

qn+1(u) = uqn(u)− qn−1(u), q0(u) = 1, q1(u) = u.

The substitution Un(u) = qn(2u) leads to

Un+1(u) = 2uUn(u)− Un−1(u), U0(u) = 1, U1(u) = 2u,

which is exactly the recurrence relation satisfied by Chebyshev polynomials of the
second kind, which are defined as

Un(cos θ) =
sin(n + 1)θ

sin θ
.

Define the generating function G(u, v) =
∑∞

n=0 qn(u)vn. By using the recurrence
relation for qn(u) and summing up, we obtain

G(u, v) =
1

1− uv + v2
.

On the other hand, by rewriting the equation (2.2) in the form

C(x) =
1

1− xC(x)
,

and iterating this identity, we get the continued fraction expansion

C(x) =
1

1− x

1− x

1− x
1−···

.

The convergents to this continued fraction are defined recursively

P1(x) = 1, Pn(x) =
1

1− xPn−1(x)
, n ≥ 1.

Suppose we have Pn(x) = pn−1(x)
pn(x) for some sequence of polynomials pn(x), which

therefore satisfies

pn+1(x) = pn(x)− xpn−1(x), p0(x) = p1(x) = 1.

In particular, for x = −1, we obtain that Fn = pn(−1) is the Fibonacci sequence
and that Fn−1

Fn
are convergents to continued fraction expansion of the golden ratio
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φ = C(−1) = 1+
√

5
2 . Summing up the generating function F (x, y) =

∑∞
n=0 pn(x)yn

by using the recurrence relation for pn(x) we get

F (x, y) =
1

1− y + xy2
.

The substitution of variables x = 1/u2, y = uv gives F (1/u2, uv) = G(u, v), which
implies

qn(u) = unpn

( 1
u2

)
.

This identity relates Catalan numbers and Chebyshev polynomials.

3. Binary terms and associahedron

The set of binary terms T on a set of variables X = {x1, x2, x3, . . . } and a
binary function symbol ·, is recursively defined:
(i) every variable is a term X ⊂ T
(ii) if t1, t2 ∈ T then (t1 · t2) ∈ T.

The length of a term t ∈ Tn is the number n of appearances of the functional
symbol in the expression of t. There is a well known bijection between binary trees
with n internal nodes and binary terms of the length n obtained by parenthesizing
the string x1 · x2 · · ·xn · xn+1. To each internal node associate the binary function
symbol. The n + 1 leaves of T are ordered rightward, so to the ith leaf associate
the variable xi for any i = 1, 2, . . . , n + 1, see Figure 3.

Fig. 3. Binary tree and the corresponding binary term

A grupoid is a set G with a binary operation ∗ : G×G → G. Assigning values
to variables e : X → G gives rise to a valuation map on terms ẽ : T → G. If the
operation ∗ is associative, (a ∗ b) ∗ c = a ∗ (b ∗ c), for any a, b, c ∈ G, then all terms
corresponding to the trees of the same size have the same value.
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There is a natural partial order on the set Tn induced by the relation (x·y)·z ≤
x · (y · z). We define t1 ≤ t2 if and only if term t2 may be obtained from term t1 by
only rightward application of associativity law. Note that this is also an ordering
of binary trees by correspondence to binary terms. In Figure 4 is presented the
partially ordered set of terms on four variables.

Fig. 4. Tamari lattice T3

Polytopes are high dimensional analogues of polyhedra. A convex polytope P in
Rn is a convex hull P = Conv{a1, . . . , am} of a finite set of points a1, . . . , am ∈ Rn.
A dimension of P is its affine dimension. A supporting hyperplane of the polytope
P is an affine hyperplane H such that H ∩ P is nonempty and P is contained in
one of the half-spaces determined by H. The intersections of P with supporting
hyperplanes are called faces of P . The set of faces is ordered by inclusion. Each face
of P , in itself, is a polytope of lower dimension. Vertices are zero-dimensional faces,
edges are one-dimensional faces and faces of codimension one are called facets. The
graph G(P ) of polytope is its one-dimensional skeleton, i.e. the union of vertices
and edges of P . The simplest polytopes are the simplex ∆n−1 and the cube In−1.
The simplex is realized as the convex hull ∆n−1 = Conv{e1, e2, . . . , en}, where
ei is the ith coordinate vector in Rn and the cube In−1 is the convex hull of the
indicator vectors eS ∈ {0, 1}n−1 of subsets S ⊂ {1, 2, . . . , n − 1}. Hence, the
numbers of vertices are f0(∆n−1) = n and f0(In−1) = 2n−1. Any face of the
simplex FS ⊂ ∆n−1 is encoded by the subset S ⊂ {e1, . . . , en}. Thus the face
lattice of the simplex ∆n−1 is a Boolean algebra Bn on the n-element set.

The overview of Catalan numbers would not be complete without the asso-
ciahedron, which is a convex polytope whose vertices enumerate Catalan objects.
The first appearance of the associahedron was in 1963, when James Stasheff, while
he was studying the homotopy of loop spaces, constructed a cell complex whose
vertices correspond to the binary terms of the length n − 1. This cell complex
turns out to be a boundary complex of a convex polytope Asn−1 which is called
Stasheff’s polytope or the associahedron. Since the vertices of Asn−1 correspond
to the binary terms, i.e. to the binary trees, it follows that the number of vertices
f0(Asn−1) = Cn is the Catalan number.
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Fig. 5. Associahedron As3

The easiest way to realize the associahedron Asn−1 is by truncations of faces
of the simplex ∆n−1. We start with the path graph Ln on n nodes and write sets
S of vertices such that the induced subgraphs are connected. Then we perform
truncations in a direct order on faces of ∆n−1 which correspond to complements
Sc. For example, if n = 4 and L4 is the path with edges {12, 23, 34}, we perform
truncations on faces {1, 4, 12, 14, 34, 123, 124, 134, 234}, see Figure 5.

4. More combinatorial counting

In this section we present the three most known enumeration problems related
to Catalan numbers.

4.1. Triangulations of a convex polygon
Catalan numbers first occurred in Euler’s problem from 1751: given a convex

(n + 2)-gon, find all different ways to divide it into triangles by nonintersecting
diagonals.

To any such triangulation we can associate a planar binary tree in a unique way,
such that triangles correspond to the internal vertices and edges of triangulations
correspond to the edges of the three. It remains to choose the distinguished edge of
polygon which determines the root. This also uniquely associates the binary term
on (n + 1) variables to the triangulation of (n + 2)-gon.

4.2. Upper-diagonal walking or Ballot problem or Dyck words
The ballot problem is introduced in 1887 by Joseph Bertrand (1822–1900): in

an election where two candidates receive the same number of votes, what is the
number of different possible voting so that the first candidate never has fewer votes
than the second candidate.

This problem is also known as a upper-diagonal walking: given a n×n-tableau
on which we can walk only rightwards and upwards, what is the number of allowed
paths from the initial position (0, 0) to the final position (n, n). A path is allowed
if it is above the main diagonal. It is obvious that a unique allowed path could be
associated to each voting order and that it is equivalent to making a word consisting
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Fig. 6. Triangulation of a hexagon and the corresponding tree

of n letters A and n letters B such that no initial segment of the word has more
B’s than A’s. These words are called Dyck words and may also be interpreted as
possible ways of correctly matching pairs of parentheses if A = ( and B =), see
Figure 7.

Fig. 7. The allowed path and the corresponding Dyck word

Let us construct the set S = ∪n≥0Sn of Dyck words recursively, where Sn

contains words of length n:
¦ S0 = {}
¦ If x ∈ Sn−1, then (x) ∈ Sn

¦ If x ∈ Si and y ∈ Sj , then (xy) ∈ Si+j+1.
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Let |Sn| be the number of words of length n. By definition it is obvious that |Sn|
satisfies the recurrence relation (2.3) for Catalan numbers, so |Sn| = Cn.

4.3. Avoiding patterns of permutations

Percy MacMahon (1854–1929) first proved a result in pattern avoidance prob-
lems for permutations. His two volume Combinatorial Analysis (1915/6) was one
of the first monographs in combinatorics.

A permutation ω on n letters is said to be (123)-avoiding if there are no
i < j < k such that ω(i) < ω(j) < ω(k). Let An(123) be the set of such per-
mutations. Count the number |An(123)| of its elements. For example A3(123) =
{132, 213, 231, 312, 321} and A4(123) = {1432, 2143, 2413, 2431, 3142, 3214, 3241,
3412, 3421, 4132, 4213, 4231, 4312, 4321}. It can be immediately seen that ω ∈
An(123) if and only if ω can be divided into two decreasing subsequences.

We construct a bijection between (123)-avoiding permutations and Dyck words.
Given ω ∈ An(123), we say that ω(i) is a right-to-left maximum if ω(i) > ω(j) for
any j > i. For example, the right-to-left maxima of 58327641 are 1, 4, 6, 7, 8. Then
for the right-to-left maxima m1, . . . , ms we have the presentation

ω = wsmsws−1ms−1 · · ·w1m1,

where wi is a subword (possible empty) of ω between mi+1 and mi. The sequence
wsws−1 . . . w1 is decreasing since ω is (123)-avoiding. Reading the decomposition of
ω from right to left, to each mi we associate subword Ami−mi−1 (with m0 = 0) and
to each wi we associate B|wi|+1. The obtained word is a Dyck word. For example

58327641 7→ ABA3BA2BAB3AB2.

To the upper-diagonal walk on Figure 7 is associated permutation 4231.
The reader can try to prove that |An(ω)| = Cn regardless to ω ∈ S3. The

proof may be found in the famous Donald Knuth’s monograph [2].
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