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IMPROPER INTEGRAL

Vladimir Jankovi�c

Abstract. In the following we shall show how to extend the class of Riemann
integrable functions with the class of functions integrable in the improper sense. The
extension is made in such a way that the same procedure can be applied to the class
of Lebesgue integrable functions.

1. Regular and singular points

In this section by integrability we mean the Riemann integrability.

1. Let [a; b] be an interval from the extended set of real numbers R and let f
be a function mapping [a; b] into the set of reals R. A point c 2 [a; b] is a regular
point of the function f if the function f is integrable in some neighborhood of c.
Otherwise c is a singular point of the function f .

THEOREM 1. The function f is integrable on the interval [a; b] if and only if

each point from [a; b] is a regular point of the function f .

Proof. If the function f is integrable on the interval [a; b], then, according
to the de�nition of a regular point above, each point from the interval [a; b] is
regular. Suppose each point from [a; b] is regular point of the function f . Let Ux

be the neighborhood of the point x 2 [a; b] (in the topology of the interval [a; b])
on which f is integrable. Because of the compactness of the interval [a; b] its cover
fUx j x 2 [a; b]g contains a �nite subcover fUx j x 2 fx1; x2; . . . ; xngg. Since f is
integrable on each of the intervals Ux, x 2 [a; b], and since [a; b] can be represented
as a union of the �nite subfamily of those intervals, then f is integrable on [a; b].

2. Examples.

1. If a = �1, then a is a singular point of the function f .

2. If b = +1, then b is a singular point of the function f .

3. If f is unbounded in each neighborhood of the point c 2 [a; b] \R, then c
is a singular point of f .

The preceding three statements follow immediately from the facts that the
Riemann integral can be de�ned only on the �nite intervals and that a Riemann
integrable function is necessarily bounded. If the function f has only �nitely many
singular points, then each of them belongs to one of the three types described in
the previous examples. This fact is given by the following

THEOREM 2. If c is a �nite isolated singular point of the function f , then f
is unbounded in each neighborhood of c.



54 V. Jankovi�c

Proof. We shall consider the case when c = b and when b is the only singular
point of f .

Suppose f is bounded in some neighborhood of the point b. On the complement
of that neighborhood it is integrable and therefore bounded. It follows that f is
bounded on the interval [a; b]. Therefore there exists such a real number M , that
jf(t)j � M for each t 2 [a; b]. Let � > 0. In the interval (a; b) there exists such a
number y, that b�y < �=6M . Since f is integrable on [a; y], there exists such � > 0,
that j���0j < �=3 for each two integral sums �, �0 of the function f corresponding
to the partitions of the interval [a; y] with diameters less than �. We can suppose
that � < �=12M . Let

P : a = t0 < t1 < t2 < � � � < tm = b; P 0 : a = t00 < t01 < t02 < � � � < t0m = b

be two partitions of the interval [a; b] with diameters less than � and choose one
point in every subinterval of each partition:

�i 2 [ti; ti+1]; i = 0; 1; . . . ;m� 1; � 0j 2 [t0j ; t
0

j+1]; j = 0; 1; . . . ; n� 1:

It is enough to prove that the absolute value of the di�erence of two integral sums

� =

m�1X
i=0

f(�i)�ti and �0 =

n�1X
j=0

f(� 0j)�t0j

is less than �. Suppose the point y belongs to the interval [tk; tk+1] of the partition

P and to the interval [t0l; t
0

l+1] of the partition P 0. Let P and P
0

be partitions

obtained from partitions P and P 0 by adding the point y and let � and �
0

be the
corresponding integral sums:

� =

k�1X
i=0

f(�i)�ti + f(y)[y � tk] + f(y)[tk+1 � y] +

m�1X
i=k+1

f(�i)�ti;

�
0

=

l�1X
j=0

f(� 0j)�t0j + f(y)[y � t0l] + f(y)[t0l+1 � y] +

n�1X
j=l+1

f(� 0j)�t0j :

Sums

� =

k�1X
i=0

f(�i)�ti + f(y)[y � tk]; �0 =

l�1X
j=0

f(� 0j)�t0j + f(y)[y � t0l]

are integral sums of the function f corresponding to the partitions of the interval
[a; y] with diameters less than �. Therefore j�� �0j < �=3. The following estimates
are valid:

j���j = jf(�k)� f(y)j(tk+1 � tk) � 2M� � �

6
;

j�0 � �
0j = jf(� 0l )� f(y)j(t0l+1 � t0l) � 2M� � �

6
;

j�� �j = jf(y)[tk+1 � y] +

m�1X
i=k+1

f(�i)�tij �M(b� y) � �

6
;
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j�0 � �0j = jf(y)[t0l+1 � y] +

n�1X
j=l+1

f(� 0j)�t0j j �M(b� y) � �

6
:

It follows that

j���0j � j���j+ j�� �j+ j� � �0j+ j�0 � �
0j+ j��0 �0j

� �

6
+

�

6
+

�

3
+

�

6
+

�

6
� �:

2. De�nition of the improper integral

1. Let f be a function mapping the interval [a; b] of the extended real line R
in the set of real numbers. If a is the only singular point of the function f and if
there exists the �nite

lim
x!a

Z b

x

f(t) dt;

or if b is the only singular point of the function f and if there exists the �nite

lim
x!b

Z y

a

f(t) dt;

or if a and b are the only singular points of the function f and if there exists the
�nite

lim
x!a
y!b

Z y

x

f(t) dt;

we say that the function f has the improper integral on the interval [a; b]. The
limit in all three cases we shall denote by

Z b

a

f(t) dt

and we shall call it the improper integral of the function f on the interval [a; b].

2. Suppose the function f , mapping the interval [a; b] of the extended real
line R in the set of reals, has �nitely many singular points from which at least one
belongs to the interior of the interval [a; b]. Let c1 < c2 < � � � < ck be singular
points of the function f lying in the interior of the interval [a; b]. If f has proper
or improper integral in each of the intervals [a; c1], [c1; c2], . . . , [ck; b], we shall say
that it has the improper integral on the interval [a; b]. The value of the improper
integral of the function f on the interval [a; b] is de�ned by

Z b

a

f(t) dt =

Z c1

a

f(t) dt+

Z c2

c1

f(t) dt+ � � �+
Z b

ck

f(t) dt:

3. Basic properties of the improper integral

In this section by integrability we mean the integrability in the proper or in
the improper sense.
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1. Let f be a function de�ned on the interval [a; b] and let c be the interior
point of that interval. The function f is integrable on the interval [a; b] if and only
if it is integrable on the intervals [a; c] and [c; b]. If it is integrable then the following
equality holds

(�)
Z b

a

f(t) dt =

Z c

a

f(t) dt+

Z b

c

f(t) dt:

As in the case of the proper integral, in the case of the improper integral we
de�ne Z b

a

f(t) dt = 0; if a = b;

Z b

a

f(t) dt = �
Z a

b

f(t) dt; if a > b:

The equality (�) will hold for arbitrarily distributed points a, b and c under the
condition that there exist all three integrals appearing in that equality.

2. If functions f and g are integrable on the interval [a; b], then f + g is also
integrable on [a; b] andZ b

a

[f(t) + g(t)] dt =

Z b

a

f(t) dt+

Z b

a

g(t) dt:

Using the preceding statement it is not di�cult to prove that by changing
the values of the integrable function in �nitely many points we obtain integrable
function whose integral is equal to the integral of the initial function. This is why
we can speak about the integrability and about the integral of a function on some
interval even in the case when that function is not de�ned in �nitely many points
of that interval.

3. If f is integrable on [a; b] and if � is a real number, then the function �f is
integrable on the interval [a; b] andZ b

a

�f(t) dt = �

Z b

a

f(t) dt:

4. If functions f and g are integrable on the interval [a; b] and if f(t) � g(t)
for each t 2 [a; b], then Z b

a

f(t) dt �
Z b

a

g(t) dt:

5. If the function f has �nitely many singular points in the interval [a; b] and
if jf j is integrable then f is integrable and����

Z b

a

f(t) dt

���� �
Z b

a

jf(t)j dt:

Remark. It is not di�cult to prove that each regular point of the function f
must be the regular point of the function jf j, too. Therefore the assumption that
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the function f has �nitely many singular points implies that the function jf j has
�nitely many singular points, too.

6. Let f be a integrable function on the interval [a; b]. Then the function F
de�ned by

F (x) =

Z x

a

f(t) dt

is continuous on the interval [a; b] and di�erentiable in each continuity point of f .

7. (Newton-Leibniz formula) Suppose the function F : [a; b]! R is continuous
and has integrable derivative F 0 = f . ThenZ b

a

f(t) dt = F (b)� F (a):

8. (Change of variable) Let f : [a; b] ! R be an integrable function, let
g : [�; �] ! R be monotone, continuous with derivative having only �nitely many
singular points. If g(�) = a and g(�) = b, thenZ b

a

f(t) dt =

Z �

�

f(g(u))g0(u) du:

It is not di�cult to prove the preceding eight statements by using the corre-
sponding statements for proper integrals and the de�nition of the improper integral.
We leave these proofs to the reader.

4. Commentaries

1. The class of Lebesgue integrable functions can be extended in the similar
way by the class of functions integrable in the improper sense. The notion of the
singular point can be introduced in the similar way as in the �rst section. The
Theorem 1 remains valid, while Theorem 2 and examples are valid only in the case
of the Riemann integral. The de�nition of the improper integral from the second
section remains unchanged. The �rst six properties of the integral enlisted in the
third section hold also for the extension of the Lebesgue integral. The remaining
two properties hold under modi�ed assumptions, similar to those appearing in the
corresponding statements for the proper Lebesgue integral.

2. The initial class of functions could be the class of Riemann or Lebesgue
integrable functions completed with the corresponding class of functions integrable
in the improper sense. In such a way a new extension of the class of integrable
functions will be obtained. That procedure of extending can be repeated arbitrarily
many times.

Example. Let f : [0;+1)! R be de�ned by f(t) = 1=
p
t sin t. The function

f has in�nitely many singular points (the points of the form k�, k= 0; 1; 2; . . . , and
+1), and therefore its improper integral does not exist. However, on every �nite
interval [0; y], the function f is integrable in the improper sense and in that case
there exists �nite

lim
y!+1

Z y

0

dtp
t sin t

:
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3. Theorem 2 could be proved more easily using Lebesgue criterion for Rie-
mann integrability. However, in some areas of mathematics we use the Riemann
integral of functions having Banach space as a co-domain. One should bear this
fact in mind also in the case when developing theory of Riemann integral on the
class of real functions. All de�nitions, theorems and proofs should be formulated
in such a way that they can be applied without change to the case of vector valued
functions (this, of course, in the case when the corresponding theorems are valid
in the case of vector valued functions). That is the reason why we have chosen the
given proof of the Theorem 2.

4. Integration by parts has not been mentioned among the properties of the
integral in the third section. The proposition about the integration by parts can
be formulated as follows:

Suppose continuous functions f and g, de�ned on the interval [a; b], have in-

tegrable derivatives. ThenZ b

a

f(t)g0(t) dt = f(b)g(b)� f(a)g(a)�
Z b

a

f 0(t)g(t) dt:

The proposition formulated in such a way has the disadvantage that in most
of the cases the application of integration by parts can not be justi�ed. This is well
illustrated by the following example:

Z 1

0

ln t dt = t ln t

����
1

0

�
Z 1

0

dt = 0� 0� 1 = �1:

If we wished to formulate the proposition about the integration by parts which
could be applicable to the above and to similar cases, its formulation would be
rather cumbersome. That is why we shall not formulate it here. If there is a
need for integration by parts in the improper integral in some problem, then it
could be solved by �rst calculating the inde�nite integral and then by applying
Newton-Leibniz formula.

5. In this article we studied the de�nition and properties of the improper
integral. The conditions for integrability for improper integrals as well as improper
integrals depending on parameters were not considered here.
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