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STICKS AS CONCRETE MANIPULATIVES
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The soul never thinks without

an image.

Aristotle

Abstract. The numbers 1, 2, . . . , 20 are represented in the form of arrangements
of horizontal and vertical lines and, when materialized, these lines are replaced by at,
longitudinal, rectangular sticks each having two sides dyed in two di�erent colors. Sharp
individuality of these arrangements is excellent for quick recognition of the numbers
they represent. The way of arranging emphasizes the relation of the numbers 1, 2,
. . . , 10 to �ve and ten and this \ten �ngers" model is basic, both conceptually and
operationally, for our approach to schematic learning of the arithmetic tables. In case
of addition and subtraction, the chosen structures of the arrangements reect clearly
\crossings the �ve and ten lines", serving e�cently as illustrations (and explanations)
of these methods.

The suggested designs of pictured products m� n are easily seen as m groups of
n sticks and, in the same time, as groups of tens and ones. Wall maps of these designs
might be used in the class, letting the pupil have them to fall back on and so helping
him/her form gradually a store of mental images related to the multiplication table.

The use of space holders is also suggested to help the child compose the symbolic
codes which immediately follow manipulative activities. Thus, a one-to-one correspon-
dence between manipulative, reective and symbolic operations is established, what
also makes them connected in a child's mind.

1. Introduction. The addition table consists of all relations k + m = n,
where k and m take values in the set f1; 2; . . . ; 9g and the multiplication table
consists of all relations k �m = n, where k and m take values in the set f2; 3; . . . ; 9g
(ignoring the trivial cases of the summand \0" in the former and of the factors \0"
and \1" in the latter table). Using the commutative laws, the number of relations
also reduces to 45 in the former and to 36 in the latter case.

The addition table is usually left to look after itself, but the multiplication table
always recives some attention (and in bygone days it was memorized by frequent
repetition).

The sets of relations n � m = k and n : m = k go together with these two
tables. Though hardly ever seen being grouped into table cards, these relations
constitute the subtraction and the division table respectively. Having learnt the
multiplication table, we know immediately all relations from the division table,
what is not the case with the subtraction, where the \serach for" the result of some
di�erences necessarily involves a short quick calculation. It is easy to see a logical
reason for it.
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In the multiplication table, when we know n the factors k and m are uniquely
determined except in the cases

12 = 2 � 6 = 3 � 4; 16 = 2 � 8 = 4 � 4; 18 = 2 � 9 = 3 � 6; 24 = 3 � 8 = 4 � 6;

where two pairs of factors exist (among one-digit numbers). In the addition table,
when n = 10, there exist �ve diferent pairs of summands

10 = 5 + 5 = 4 + 6 = 3 + 7 = 2 + 8 = 1 + 9;

and for n = 8, 9, 11, 12 four pairs, n = 6, 7, 13, 14 three pairs, n = 4, 5, 15, 16 two
pairs and the summands are uniquely determined only when n = 2, 3, 17, 18.

For example, when dividing, on hearing \63", the pair (7; 9) is \ready" and as
soon as we know the divisor, the answer follows immediately. Not quite so, when
subtracting, on hearing \11", we do not try to make \ready" four di�erent pairs
and after hearing the subtrahend, we perform a quick calculation.

Our aim in this paper is to produce designs of arrangements of sticks which
form regular patterns, the shape of which projects their number at a glance. Then,
these heaps of sticks will also be used to \materialize" (express in concrete form) the
arithmetic operations which are carried out by rearranging and which are supposed
to be followed by writing of corresponding mathematical expressions. Thus, a
one-to-one correspondence between manipulative and perceptive activities on one
side and formal activities on the other side is attained and visual representations
and symbolism are strictly linked. Of course, we are con�ned to the frames of
the addition and multiplication tables and our main objective is their schematic
learning, which, in the present context, is to mean an intelligent learning. (See [4]
for the role of such learning.)

2. Number Arrangements. When we gather four objects together, then
such a collection materializes our abstract idea, or better to say, mental image of
the number \4". Drawing a group of four points or circles, we also materialze the
same idea that way. As known from the Papyrus Rhind, in the ancient Egyptian
arithmetic, the following pictures (hieroglyphs):

Fig. 1

were used to denote the numbers 1, 2, . . . , 9. Notice that all these pictured heaps of
sticks have easily recognizable shape and that \5" is seen as \3+2", \6" as \3+3",
\7" as \4 + 3", \8" as \4 + 4" and \9" as \3 + 3 + 3". Several systems of number
pictures (Busse, Hentchel, Born etc.) are also known and they were designed in
19th century, as a result of following the Comenian programme of learning which
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starts with the \pictured surroundings" (orbis pictus) to provide so meaning and
evidence.

When we plan to materialize the idea of a number by means of concrete mate-
rials, we might well gather a heap of jettons. And comparing with number-pictures,
the advantage of such heaps is at least in the possibility of changing them easily by
adding or removing some jettons.

Spreading linearly, sticks have an advantage over jettons that, when put one
upon another, they can be still arranged to form patterns casting regularity of their
structures.

Well, now we turn to the description of concrete manipulatives following an
evidently very ancient idea and respecting the child's instinct of manipulation. Our
didactical set contains twenty light, at, longitudinal rectangular sticks each having
its two sides dyed in two colors (say, blue and red). In this \colorless" paper, two
sides of a stick will be portrayed by an \empty" (white) rectangle and a \full"
(black) one.

Fig. 2

Now our plan is to use the arrangements of these sticks (or pictures of such ar-
rangements) with the intention to materialize mental and formal operations related
to the process of forming of the addition and multiplication tables.

3. Standard Arrangements. Each of the following expressions

111� 74; 8 + 11 + 2 + 16; 3 � 7 + 16; 37

represents the same number and if asked \which one" the right answer would be
\that one the expression represents". This rightness is based on the fact that they
are numerically equivalent or, as we also say it, they have the same numerical
value. It is something else to ask which of these expressions is more informative,
that is to say, which of them stimulates more easily the intuitive representation of
the number that it stands for. Then, we are uniquely determined to choose \37"
because it evokes the representation of 3 tens plus 7 ones. That presentation of
a number in the form of the sum of ones, tens, hundreds etc. is the basis of the
decimal system, and thinking in images, such groupings evoke the clearest spacial
representations of numbers (due to cultural enviroment and schooling, but in some
past civilizations quite di�erent systems were used, [5]).

For that matter, the calculation is nothing more than a sequence of transitions
from an expression to a simpler, numerically equivalent one until the decimal no-
tation is obtained. The e�ect of such notation explains our readiness to answer the
question like \which number is represented by the expression 3 � 7 + 16", saying
\37".

Representing a number by means of an arrangement of sticks, jettons, pips
or some other objects, the shape, as a global property of such arrangements, is
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signi�cant, and we could say in principle, that with more regularity more structural
distinction is present. As a matter of fact, \nice" shapes would reect sharply the
number of object building such an arrangement.

The dominoes are a common example of a design, where the number of spots
on each piece can be seen at once.

Now we proceed advocating for the grouping of sticks as shown in Fig. 3 and
Fig. 4.

1 2 3 4 5 6

7 8 9 10

Fig. 3

Let us observe that \3" is privileged as the largest number of objects a child
can see at once and what is an opinion maintained by many teachers. Furthermore,
\4" is seen as \3+1", \5" as \3+2", \6" as \5+1", \7" as \5+2", \8" as \5+3", \9"
as \5+4" and \10" as \5+5". The way of grouping emphasizes the relation of each
number to �ve and ten. A connexion between this grouping and the �ngers on one
hand together with those, in a crossing position, on the other hand is evident. And
as it is everybody's personal experiance, the �ngers are the �rst piece of arithmetic
apparatus to be used.

The numbers 11, . . . , 20 are represented so that they are seen as 10 + 1, . . . ,
10 + 10.

; . . . ; ; . . . ;

11 15 20

Fig. 4

The heaps of sticks obtained by this grouping will be called standard arrange-

ments.

Sharp individuality of these patterns is excellent for quick recognition. The
activity of arranging should go parallelly with the exercises of counting and then,
the children easily visualize each number up to 20.
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There are, of course, many important little things that we shall avoid to tell
here and which would be more appropriate to a related workbook.

4. Arranging instead of Counting. When counting elements of a set
belonging to the natural environment, we, in our thoughts, sort them one after
another associating to each the name of a number pronounced in the innner speech
or loudly. To the counting as a mental operation, the activity of composing of
standard arrangements is correspondent as a manipulative operation. The order of
moves by which a stick is put to its position in the heap is displayed in Fig. 5.

5

4

3

2

1

6 7 8 9 10

Fig. 5

and the removing goes in the oposite order. Thus, such arrangings and removings
are correspondent to the counting forwards and backwards and, it is essential, that
this activity is cultivated when performed in the class.

Suppose the pupil has learnt to compose the standard heaps and to recognize
them at a glance. Then, the e�ect of their regularity has to be emphasized in
a proper way. For instance, the pupil is asked to guess the number of sticks in
a chaotic heap and then he/she is required to arrange them standardly. With
comparing of two numbers, the result of guessing is evaluated and such activities
could spring up an interesting competition in the class.

Two standardly arranged heaps put one next to the other, as Fig. 6 represents
it,

; ;

Fig. 6

form together one heap which will not be considered as very chaotic, although the
regularity of its \parts" does not improve much the accuracy of guessing. In this
case, rearranging and forming of the standard heaps (as shown in Fig. 7)

;

Fig. 7

is a manipulative activity which can be considered as a prelude to the addition.
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Mere rearranging is also an activity within which the principle of invariance of
number is expressed manipulatively.

From the eighteenth century and the Tillich's bricks on, several systems of
manipulatives have been developed: the Chelsea bead-bars, the \Welbent" bead-
bars, the Montessori numerical rods (see [3]), the Cuisenaire's numbers in colors
(see [2]) etc., not to mention all varieties of abacus already existing in the ancient
times. In spite of that, we try with an innovation in this paper and the advantages,
when existing, are exactly those which will be recognized by the readers.

5. Beginnings in Addition. From the very beginning of the teaching of
addition, a variety of word problems is involved to help the pupil link the symbolic
code of mathematics to the reality of his/her everyday world. Thus the meaning
of this operation rises from many speci�c actions expressed by so many verbs and,
therefore, there exists no concrete material to take place of them. That is why this
teaching theme is usually divided into the following steps:

(I) Recognition of situations in natural or pictured surroundings to which we
react adding.

(Using the set theoretical language, we can describe such situations as beeing
the collections of two disjoint sets whose cardinatlities are known.)

(II) Composition of the sum as an expression formed by the use of the plus sign.

(For example, writing or pronouncing of a sum like \7 + 5".)

(III) Equating of the sum to its decimal notation.

(For example, writing or pronouncing of an equation like \7 + 5 = 12".)

When reduced to the step (III), the addition is a formal operation carried out
by the procedures which reduce each sum to those ones in the addition table. And
when a formal work like memorizing of tables is planed to be induced, it is wise to
limit the types of apparatus.

Working with sticks, a situation to which we react adding will be shaped as
two standardly arranged heaps set down one beside the other.

;

Fig. 8

In Fig. 8, the pairs of heaps represent the sums \3+6" and \5+3". To the �nding
of sums, the arranging into one heap is correspondent, when all sticks of the second
heap are placed to the position of the �rst one. The following arrangements:

;

Fig. 9
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illustrate it in the case of pairs of heaps given in Fig. 8.

When the child \makes up a sum" with concrete material, the space holders
can be exploited to help him/her write the proper equations and so to get him/her
relate manipulative and reective activities.

For example, we start with the picture:

+

Fig. 10

When the sum \3 + 6" is written, we suggest the arranging into one heap, adding
the equality sign and another space holder (Fig. 11).

3 + 6 = :

Fig. 11

Recognizing the heap, the child completes the equation, obtaining so \3 + 6 = 9".

The following additions are easy

5 + 1 = 6

5 + 2 = 7

5 + 3 = 8

5 + 4 = 9

5 + 5 = 10:

This signi�cant role of the summand \5" is also displayed by arranging (and is
accentuated by turning of the opposite side of the sticks beeing moved in Fig. 12).

(before) (after)

5 + 1 = 6

5 + 2 = 7
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. . .

5 + 5 = 10

Fig. 12

The easiness of these additions is also felt when working with sticks: the whole
second heap can be lifted and put over the �rst one. In the harder cases, the heap
representing the number \5" is formed �rst, and then the rest of the sticks is put
over. Let us illustrate these two steps:

Result
����������!
of the �rst step

Result
������������!
of the second step

Fig. 13

and the corresponding formal operations are

1 3
_
+

4 + 4 = 5 + 3 = 8:

where the �rst step is the completing of the �ve.

With the sums not exceeding ten, there exist only four harder cases and they
deserve to be selected and pictured (Fig. 14).

6 6 7 8

3 + 3 4 + 2 4 + 3 4 + 4

Fig. 14
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6. Inverse Addition and Decomposition into Summands. Knowing the
sum of two numbers and one of them, the other one is found by subtraction. But
this operation, when worded in this way: \What number must be added to 7 to
make 10", is known as the inverse addition.

Building up the addition table some speci�c cases of the inverse addition are
necessary involved and we have to give a clear evidence of them.

What number must We see it is
be added to

3 to make 5 2

4 to make 5 1

5 to make 10 5

6 to make 10 4

7 to make 10 3

8 to make 10 2

9 to make 10 1

Fig. 15

Hereupon we expect the child to form mental representations based on the
pictures in Fig. 15 and, after some practice, to give the answers easily.

In the previous case, the given sum was 5 or 10. Now we turn to those cases
where the given sum is 2, 3, 4, 6, 7, 8 and 9.

Working with sticks, the child decomposes the arrangements representing the
given number (sum) until the heap representing the given summand is obtained.
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The removed sticks are simultaneously arranged into a new heap turning the red
side up. For example, when the number \7" is given and its summand \3", the
result of this manipulation is diplayed in the following �gure.

(before) (after)

7 = 3 + 4

Fig. 16

Such a manipulation has to be followed by the corresponding equation.

In the case of the number \9" and its summand \3", we have

(before) (after)

9 = 3 + 6

Fig. 17

Children should be helped to discover the easier way

(before) (after)

9 = 6 + 3

Fig. 18

where the decomposing stops as soon as the \red" three appears. This way, in
which we express the commutative law, is also felt as manipulatively easier one.

These exercises can be summarized using the two color cards (as the following
one is)

7 = 6 + 1 = 5 + 2 = 4 + 3

Fig. 19

which would illustrate all these decompositions.
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7. Two Easy Cases of Adding up over Ten. The sums of the form 9+ a,
a = 1, 2, . . . , 9 are easily memorized and, working with sticks, the rearrangement
consists of a single move by which we place just one stick taken from the \a" heap.

9 + 1 = 10

9 + 2 = 11

9 + 3 = 12

9 + 1 = 10

9 + 4 = 13

9 + 5 = 14

9 + 6 = 15

9 + 2 = 11

. . .

9 + 7 = 16

9 + 8 = 17

9 + 9 = 18

9 + 9 = 18

Fig. 20

In addition to its standard arrangement \10" is also easily recognizable when
set up as \5 + 5":

Fig. 21

Without any arranging, the sums 5 + a, a = 6, 7, 8, 9 are immediately seen.
Put a = 5 + b, b = 1, 2, 3, 4 and form the \b" heap turning its sticks to the red
side in order to have an invariant \blue" ten:

5 + 6 = 11 5 + 7 = 12 5 + 8 = 13
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5 + 9 = 14

Fig. 22

Notice that \5+6" is seen as \10+1", \5+7" as \10+2", \5+8" as \10+3"
and \5 + 9" as \10 + 4".

As it might be expected, the easiest sums involving \crossing the ten" are those
of the form 10 + a, where the settings representing these sums and the standard
arrangements representing their decimal notations coincide.

8. Addition Involving \Crossing the 10-line". When the sum of the two
one-digit numbers exceeds ten, then such addition is said to involve \crossing the
10-line". In this case, the second summand breaks up so that a part of it, taken
together with the �rst summand completes ten.

In view of the commutative law, we might suppose that the �rst summand is
equal or greater than the second one.

As an example, take the sum \8 + 7":

Fig. 23

Removing the sticks from the second heap, they are turned and placed to complete
the �rst heap which represents the number \10":

Fig. 24

Working with apparatus this summing goes with such an ease that it is likely to
become a mere amusement. That is why the manipulative activities have to be fol-
lowed by formal operations which make this method clearly split into intermediate
steps.

Going back to the previous example, as soon as the two heaps are arranged
(Fig. 23), the expression \8 + 7" has to be written. Then, following the standard
arrangement (Fig. 24), the second summand is decomposed

2 5
_
+

8 + 7
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and (after the oral \8 + 2 = 10") the formal work completes as follows

2 5
_
+

8 + 7 = 10 + 5 = 15:

For the sum \7 + 5", we have

(before) (after)

Fig. 25

and formally

3 2
_
+

7 + 5 = 10 + 2 = 12:

Working with this kind of apparatus, the pupil forms gradually visual images
of standard arrangements what helps him/her to perform the operations in the
absence of any concrete material. While the child is working all these exrecises,
the teacher can dose a help using space holders and, directing the activities, he/she
should use as few words as possible.

When both summands are equal or greater than �ve, there is another example
of addition whose easiness is quite imposing. The sum of the numbers 5 + a and
5+ b is 10+ a+ b, so that the addition of the smaller than �ve numbers a and b is
left. In the arrangements, \5" is represented with the blue side of sticks being up
and a, b with red.

In the following �gure the sum \8 + 7" is represented

Fig. 26

which is also seen as \blue" ten plus \3 + 2" red sticks.
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Such a way of adding is especially e�ective when the summands are equal:

6 + 6 = 12

6 + 6

7 + 7 = 14

8 + 8 = 16

9 + 9 = 18

7 + 7

. . .

Fig. 27

and these pictures also serve as an explanation of the easiness with which such
sums are memorized.

9. Beginnings in Subtraction. Everything what was said about addition,
in the section 5, is equally valid for subtraction. Namely, this theme is also divided
into steps: recognition of situation to which we react subtracting, composition of
the di�erence and equating to decimal notation. Staying whithin the frame of
subtraction table, we will also use sticks to materialize the corresponding mental
operations.

The most straightforward idea of materialization of the di�erence \n�m" is
\taking away": from n takem. Manipulatively, this means that the sticks are taken
away from the \n" heap and arranged until the \m" heap is obtained (with the red
side of sticks being up). In the case of the di�erence \9� 5", we have:

(before) (after)

Fig. 28

The remaining sticks stand for \n�m" and, in the example we follow, such heap
represents the number \4".

Observe some disadvantages of this modeling of the di�erence. The \n" heap
that we start with suggests in no way the di�erence \n�m". After decomposing,
these two heaps suggest this di�erence, but the minuend they represent is not
standardly arranged.



Schematic learning of the addition and multiplication tables 45

A better idea is to start with the heap composed of sticks in two colors. For
example, the di�erence \9� 5" can be represented in two ways

9� 5 9� 5

Fig. 29

where the �rst way suggests the inverse addition and the second one the direct
subtraction. Both these methods are equally important and they have to be equally
practicized. At the very beginning a \blue" and a \red" subtrahend might be
written to correspond in color with sticks.

To illustrate, consider the di�erences where the minuend is less than 10 and
where \the 5-line is crossed".

7� 6 = 1 7� 5 = 2 7� 4 = 1+ 2 = 3 7� 3 = 2+ 2 = 4

7� 1 = 6 7� 2 = 5 7� 3 = 7� 2� 1 = 4 7� 4 = 7� 2� 2 = 3

Fig. 30

Notice how the pattern of these arrangements serves very well as an explanation
how to \cross the 5-line", with the red sticks split into a horizontal and a vertical
group.

Similarly, we have:

8� 7 = 1 8� 6 = 2 8� 5 = 3 8� 4 = 1+ 3 = 4

8� 1 = 7 8� 2 = 6 8� 3 = 5 8� 4 = 8� 3� 1 = 4

Fig. 31

and together with 6� 2, 6� 4, 6� 3, they are all possible di�erences which involve
\crossing of the 5-line".
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The following easy di�erences are involved when \the 10-line is crossed":

10� 9 = 1 10� 8 = 2 10� 7 = 3 10� 6 = 4 10� 5 = 5

10� 1 = 9 10� 2 = 8 10� 3 = 7 10� 4 = 6 10� 5 = 5

Fig. 32

10. Subtraction Involving \Crossing the 10-line". When the minuend
is greater than ten and the di�erence less than ten, then such subtraction is said
to involve \crossing the 10-line". Now we proceed with illustrating of all possible
cases of these di�erences:

11 � 9 = 1+ 1 = 2 11� 8 = 2+ 1 = 3 11� 7 = 3+ 1 = 4 11� 6 = 4+ 1 = 5

11� 2 = 11� 1� 1 11� 3 = 11 � 1� 2 11� 4 = 11 � 1� 3 11� 5 = 11� 1� 4

= 9 = 8 = 7 = 6

12 � 9 = 1+ 2 = 3 12� 8 = 2+ 2 = 4 12� 7 = 3+ 2 = 5 12� 6 = 4+ 2 = 6

12� 3 = 12� 2� 1 12� 4 = 12 � 2� 2 12� 5 = 12 � 2� 3 12� 6 = 12� 2� 4

= 9 = 8 = 7 = 6

13� 9 = 1+ 3 = 4 13� 8 = 2+ 3 = 5 13� 7 = 3+ 3 = 6

13� 4 = 13� 3� 1 = 9 13� 5 = 13� 3� 2 = 8 13� 6 = 13� 3� 3 = 7

14� 9 = 1+ 4 = 5 14� 8 = 2+ 4 = 6 14� 7 = 3+ 4 = 7

14� 5 = 14� 4� 1 = 9 14� 6 = 14� 4� 2 = 8 14� 7 = 14� 4� 3 = 7

15� 9 = 1+ 5 = 6 15 � 8 = 2+ 5 = 7

15 � 6 = 15� 5� 1 = 9 15� 7 = 15 � 5� 2 = 8

16� 9 = 1+ 6 = 7 16 � 8 = 2+ 6 = 8

16 � 7 = 16� 6� 1 = 9 16� 8 = 16 � 6� 2 = 8
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17� 9 = 1+ 7 = 8

17� 8 = 17� 7� 1 = 9

18� 9 = 1+ 8 = 9

18� 9 = 18� 8� 1 = 9

Fig. 33

For the sake of equality of two methods, the di�erences

11� 5; 11� 6; 13� 6; 13� 7; 15� 7; 15� 8; 17� 8; 17� 9;

might also be included.

We all are inclined to calculate the di�erence \11� 9" by inverse addition and
the di�erence \11� 2" just as 11� 2.

Which way of calculation is easier depends, of course, on the individual incli-
nations (often spontaneously formed). Nevertheless, the following could be said:
the inverse addition is easier whenever the subtrahend is greater than the half of

minuend and the direct subtraction is easier whenever the subtrahend is smaller

than the half of minuend.

11. Multiplication. In the multiplication table the values of products go
up to 81 and manipulation with so many sticks would mean facing of drudgery.
When starting with multiplication, the pupil will usually have learnt addition and
subtraction up to 100. If he/she has been using standard arrangements, then
his/her corresponding visual representations are very well developed. For him/her,
the following arrangement:

Fig. 34

would mean three tens and seven ones, that is he/she would immediately see the
number \37" being set up. Thus, pictured sticks should be used instead of concrete
sticks, when their number surpasses a reasonable limit.

Now our objective is to design pictured arrangements which will represent the
products

n � 5; n = 1; . . . ; 9

n � 6; n = 1; . . . ; 6

n � 7; n = 1; . . . ; 7

n � 8; n = 1; . . . ; 8

n � 9; n = 1; . . . ; 9
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To describe the idea how these pictorized representations are formed, take an
example. For, say, 6 � 7 we design an arrangement which is easily seen as six groups
of seven sticks and, in the same time, as four groups of ten and one group of two
sticks. In addition to the standard arrangements, the numbers 6, 7, 8 and 9 will
also be represented by a suitable arrangement for each of them, designated by 1 � 6,
1 �7, 1 �8 and 1 �9 respectively. The series of such drawings, sized up properly, might
be used as n � 6, n � 7, n � 8 and n � 9 maps kept on walls in the class. Contacts with
these pictorial arrangements will surely enrich the arithmetic imagery of a child in
this matter which is often exposed to a drill of learning by rote.

First we start with the \n � 5" series.

1 � 5

2 � 5

3 � 5

4 � 5

5 � 5

6 � 5

7 � 5

8 � 5

9 � 5

Fig. 35

The results of multiplications are supposed to be seen from the pictures.
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Modeling a suitable \red" six, the \n � 6" series is as follows:

1 � 6

2 � 6

3 � 6

4 � 6

5 � 6 is omitted since 6 � 5 has already been represented.

6 � 6

Fig. 36

Notice that the pictures for 1 � 6 and 2 � 6 are constituent parts.

1 � 7

2 � 7
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3 � 7

4 � 7

6 � 7

Fig. 37

Notice also here that the pictures for 1 � 7, 2 � 7 and 3 � 7 are constituent.

1 � 8

2 � 8

3 � 8

etc.

Fig. 38

When n runs, the product n � 9 is equal to 9, 18, 27, 36, 45, 54, 63, 72, 81.
How the �gures of these decimal notations are related to n is shown by this table

tens:

ones:

0

9

1

8

2

7

3

6

4

5

5

4

6

3

7

2

8

1
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1 � 9

2 � 9

3 � 9

etc.

Fig. 39

12. Some Remarks. Instead of sticks, many other kinds of concrete objects
might be used. To preserve the manipulations and their outcomes described in this
paper, standard arrangements of such objects have to be designed following our
\ten �ngers" model. For instance, square jettons (with sides in di�erent colors)
have to be standardly arranged as follows
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Fig. 40

Besides being more compact entities, the arrangements of sticks, pictured as line
segments, are easier to be drawn than the ones composed of jettons.

Working with number pictures, the sticks should be drawn as straight line
segments. When sticks have not been used as manipulatives, weaving a story, the
teacher can relate such segments and their arrangements to some real world objects
and their groups.
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