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Abstract. In this paper the results of the learning concept of definite integral
and numeric integration with the computer is presented. The tested students attend
Šabac Chemical Technological college. The aim of this test was to check the student’s
theoretical, visual and practical knowledge of definite integral.
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1. Introduction

In almost all secondary schools definite integral and its applications are studied.
The concept of definite integral is almost always introduced as the Riemann integral,
which is in turn defined in terms of Riemann sums, and its geometric interpretation.
For secondary school pupils, as well as for high school and university students, this
definition is hard to understand. The courses of Numerical mathematics at all
levels contain topics on numerical integration, which is partly based on Riemann
sums. With the aid of mathematical software for visualization and computation
of approximate integrals, the notion of definite integral and its calculation is more
easily adopted by pupils and students.

We present one possible approach to lecturing on approximate integration,
based on our experience with the students of Šabac Chemical technological college
and the students of Computer Science at the Faculty of Sciences, Novi Sad.

We start by introducing the definite integral. The concept is explained by
calculation of the area of a figure, and it is then formalized by using the Riemann
sums and its geometrical interpretation. Left, middle and right rectangular rule
are introduced from the start. Trapezoidal and Simpson’s rule are introduced
soon afterwards. Simpson’s rule is first explained in its simple form, and later in
the complex form. The computer was used to produce graphs and pictures, and
substantial attention was devoted to developing interactive illustrations which are
animated by changing parameters.

In the class we used GeoGebra and Mathematica for visualization. While
Mathematica satisfies most of our computing needs, it lacks interactively, which
GeoGebra supplements in more than one way. Besides, GeoGebra is much simpler
to use, and it is available in many languages, including pupils’ native Serbian. Of
no lesser importance is the fact that GeoGebra is free, while Mathematica is not.
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We used applets made in Mathematica, which were published on the accompa-
nying CD with the book [2], and on the web, www.herceg.rs/. GeoGebra applets
were also used, www.herceg.rs/. The students used the same applets in their work.
The CD contained additional examples, which were not in the book. This allowed
the students to practice individually, study our examples and make their own ones.

Two generations of high school students were tested after the topic on numer-
ical integration was completed. Every generation took two tests. Test results show
that the use of software has had significant positive impact on student’s knowledge
gained in this course.

2. The area problem

In integral calculus the area problem leads us to formulate idea of definite
integral in terms of limits. If we want to use a computer in teaching we may follow
suggestions given by Tall [5]. Tall suggested how concepts of the Calculus could
be approached globally using computer. The idea of area under a graph presents
a fundamentally great problem. Each calculation of the approximation of area
under a graph requires many intermediate calculations. Using algebraic methods
the summation in all but the simplest examples becomes exceedingly difficult. The
calculator enables area approximations to be computed numerically. A computer
with flexible computer language can allow much more powerful methods to be used.
This leads to far more accurate calculations and can be most helpful for inducing
algebraic formulae from numerical results, [5].

The area problem can be formulated as follows: Find area A of the region S
bounded by the graph of function f , the vertical lines x = a and x = b, and the
x-axis, where f (x) ≥ 0 for x ∈ [a, b]. The region

S = { (x, y) | a ≤ x ≤ b, 0 ≤ y ≤ f (x) }
is illustrated in Figure 1.

Fig. 1 Fig. 2

Let us try to find area under parabola y = x2 from a = 0 to x = b, the region
S =

{
(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ x2

}
, Figure 2. One method of approximating the

desired area is to divide the interval [0, 1] into subintervals of equal length and
consider the rectangles whose bases are these subintervals and whose heights are
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Fig. 3

the values of the function at the right-hand endpoints of these subintervals. Figure
3 shows the approximation of the parabolic region by eight rectangles.

Let An be the sum of areas of n rectangles. Each rectangle has width 1/n and
the heights are (i/n)2, i = 1, 2, . . . , n. Thus

An =
n∑

k=1

(
k

n

)2 1
n

=
1
n3

(
12 + 22 + · · ·+ n2

)

=
1
n3

n (n + 1) (2n + 1)
6

=
(n + 1) (2n + 1)

6n2
.

Using this we obtain the following tables:

n 2 4 8 20 40 200 1000

An
5
8

15
32

51
128

287
800

1107
3200

26867
80000

6767
20000

Table 1

n 2 4 8 20 40 200 1000

An 0.625 0.46875 0.39844 0.35865 0.34594 0.33584 0.33835

Table 2

It looks as if An becomes closer to
1
3

as n increases. In fact,

lim
n→∞

An = lim
n→∞

(n + 1) (2n + 1)
6n2

=
1
3
.

So, we accept

A = lim
n→∞

An =
1
3
.

Using these algebraic methods one can consider the summation in all but the sim-
plest examples. If we use dynamic mathematics software, we can offer more.
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Fig. 4

Fig. 5

Let us try to find approximations of the area under parabola y = xm from x = 0
to x = 1 for different values of m. On Figure 4 we present use of right endpoint
approximation. Results are presented as fractions and as decimal numbers. On
Figure 5 we give the approximation of area under parabola y = xm from x = 0 to
x = 1 for different values of m obtained using right endpoint approximation with
n subintervals of equal length and corresponding limit values as n →∞.

Fig. 6

Firstly, we can consider S as region which depends on a and b. Figure 6
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dynamically visualizes the concept of the Riemann integral sum. In addition to
graph of functions f two points a and b are shown that can be moved along the
x−axis in order to modify the considered interval. Using a slider, say n, one can
change the number of rectangles used to calculate the right-hand sum in respect to
function f within this interval. The values of this sum are displayed as dynamic
text which automatically adapts to modifications.

Fig. 7

In a similar way we can consider left-hand sum and midpoint sum. All sums,
right-hand, left-hand and midpoint, one can see at once, Figure 7. Using Mathe-
matica one can investigate how these sums change when n tends to infinity. In our
CD (in the book [2]) the routines for graphical presentations of left-hand, right-
hand and midpoint sum are given. These routines may be changed so that we can
use slider to change the number of subintervals, see www.herceg.rs/.

In applying idea of this example, where we considered the area under parabola
y = x2, to more general region S of Figure 1, we have no need to use rectangles of
equal width. We start by subdividing the interval [a, b] into n subintervals [xi−1, xi]
by choosing partition points x0, x1, . . . , xn so that

a = x0 < x1 < · · · < xn−1 < xn = b.

This subdivision is called a partition of [a, b] and we denote it by P . Let us define
∆xi = xi − xi−1 and λ(P ) = max {∆x1, ∆x2, . . . , ∆xn}. By drawing the lines
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Fig. 8 Fig. 9

x = xi, i = 0, 1, . . . , n we use the partition P to divide region S into strips S1,
S2, . . . , Sn, as in Figure 8.

If we choose a number ci ∈ [xi−1, xi], i = 1, 2, . . . , n and construct a rectangle
Ri with the base ∆xi and height f (ci), we can approximate strip Si by rectangle
Ri, Figure 9.

Each ci can be anywhere in its subinterval. The area of rectangle Ri is

Ai = f (ci)∆xi.

The n rectangles R1, R2, . . . , Rn form a polygonal approximation to the region S.
The are A of region S is approximated by sum of the areas of these rectangles, i.e.

A ≈ An =
n∑

i=1

f (ci) (xi − xi−1) ,

Using our Mathematica routine one can see how this approximation changes when
n tends to infinity. This approximations appears to become better and better as
the strips become thinner and thinner, i.e. as λ(P ) → 0. Therefore we define the
area A of the region S as

(1) lim
λ(P )→0

n∑

i=1

f (ci)∆xi

if this limit exists. The preceding discussion and our dynamic figure show that the
definition of area corresponds to our intuitive feeling of what area ought to be.

The limit of the form (1) arises when we compute an area. It turns out that
the same type of limit occurs in a wide variety of situations. We therefore give this
type of limit a special name and notation. So we have the following definition.

Definition 1. If f is a function defined in [a, b], let P be a partition of [a, b]
with partition points x0, x1, . . . , xn where a = x0 < x1 < · · · < xn−1 < xn = b.
Let us denote ∆xi = xi − xi−1, i = 1, 2, . . . , n, λ(P ) = max {∆x1,∆x2, . . . , ∆xn}
and let ci be an arbitrary point in [xi−1, xi]. Then the definite integral of f from a
to b is ∫ b

a

f (x) dx = lim
λ(P )→0

n∑

i=1

f (ci)∆xi

if this limit exists.
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3. Numerical integration

If we need to calculate an approximation of a definite integral, we can use some
Riemann sums. Recall that definite integral is defined as the limit of Riemann
suma, so any Riemann sum could be used as an approximation to the integral. In
particular, if we take the Riemann sum

An =
n∑

i=1

f (ci) (xi − xi−1)

with ci = xi−1, then
∫ b

a

f (x) dx ≈ Ln =
n∑

i=1

f (xi−1) (xi − xi−1) .

The approximation Ln is called left endpoint approximation.
The second choice of ci is ci = xi. In this case we have

∫ b

a

f (x) dx ≈ Rn =
n∑

i=1

f (xi) (xi − xi−1)

and this approximation is called right endpoint approximation.
If we choose ci = 1

2 (xi−1 + xi), we obtain midpoint approximation
∫ b

a

f (x) dx ≈ Mn =
n∑

i=1

f

(
1
2

(xi−1 + xi)
)

(xi − xi−1) .

Fig. 10 Fig. 11

In a special case, when we take a partition of [a, b] into n subintervals of equal
length h = (b− a) /n, we have

xi = a + ih = a + i
b− a

n
, i = 0, 1, . . . , n

and the following three approximations
∫ b

a

f (x) dx ≈ Ln =
b− a

n

n−1∑

i=0

f

(
a + i

b− a

n

)
,
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∫ b

a

f(x) dx ≈ Rn =
b− a

n

n∑

i=1

f

(
a + i

b− a

n

)
,

∫ b

a

f(x) dx ≈ Mn =
b− a

n

n∑

i=1

f

(
a + i

b− a

n
− b− a

2n

)
.

Figures 10, 11 and 12 show Ln, Rn and Mn for n = 10, a = 0, b = 1 and f (x) =
sin x + 2 respectively.

Fig. 12

Another approximation results from averaging the approximations Ln and Rn:
∫ b

a

f(x) dx ≈ Tn =
1
2

( n∑

i=1

f (xi−1) (xi − xi−1) +
n∑

i=1

f (xi) (xi − xi−1)
)

=
n∑

i=1

f (xi−1) + f (xi)
2

(xi − xi−1) .

The formula Tn is called Trapezoidal Rule. The reason for this name can be seen
from Figures 13, where we give Trapezoidal Rule for n = 1. Figure 14 shows
Composite Trapezoidal Rule, i.e. the case n > 1,

Fig. 13 Fig. 14

which illustrates the case f (x) ≥ 0. The area of trapezoid that lies above the i-th
subinterval is

f (xi−1) + f (xi)
2

(xi − xi−1)
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and if we add the areas of all these trapezoids we get Tn. In equidistant case, i.e.
if xi = a + i b−a

n , i = 0, 1, . . . , n, we obtain Trapezoidal Rule in the form

Tn =
b− a

2n

(
f(a) + 2

n−1∑

i=1

f

(
a + i

b− a

n

)
+ f(b)

)
.

Let us consider a partition of interval [a, b] into n subintervals, but this time we
assume that n is an even number, where a = x0 < x2 < x4 < · · · < xn−2 < xn = b
and x2i−1 = 1

2 (x2i−2 + x2i). In this case we can consider approximation of a
definite integral as weighted average of Tn/2 an Mn/2:

Sn =
1
3
Tn/2 +

2
3
Mn/2,

where Tn/2 and Mn/2 denote trapezoidal formula and midpoint formula for partition
a = x0 < x2 < x4 < · · · < xn−2 < xn = b, respectively. So, we obtain

Sn =
1
3

n/2∑

i=1

f (x2i−2) + f (x2i)
2

(x2i − x2i−2)

+
2
3

n/2∑

i=1

f

(
1
2

(x2i−2 + x2i)
)

(x2i − x2i−2)

=
1
6

n/2∑

i=1

(f (x2i−2) + f (x2i) + 4f (x2i−1)) (x2i − x2i−2) .

The approximation Sn is called Simpson’s rule. In equidistant case, i.e. if xi =
a + i b−a

n , approximation Sn (n an even positive integer) is given by

Sn =
b− a

3n

(
f (a) + 4

n/2∑

i=1

f

(
a + (2i− 1)

b− a

n

)

+ 2
n/2−1∑

i=1

f

(
a + 2i

b− a

n

)
+ f (b)

)
.

The Simpson’s rule can be derived in various ways. One derivation replaces
the integrand f by the quadratic polynomial, i.e. the parabola, which takes the
same values as f at the end points a and b and the midpoint m = (a+ b)/2, Figure
15.

Fig. 15 Fig. 16
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If the interval of integration [a, b] is “small” in some sense, then Simpson’s
rule will provide an adequate approximation to the exact integral. By small, what
we really mean is that the function being integrated is relatively smooth over the
interval [a, b]. For such a function, a smooth quadratic interpolate like the one used
in Simpson’s rule will give good results.

In many cases, Simpson’s rule may give very poor results. One common way
of handling this problem is by breaking up the interval [a, b] into a number of small
subintervals. Simpson’s rule is then applied to each subinterval, with the results
being summed to produce an approximation for the integral over the entire interval.
This sort of approach is termed the composite Simpson’s rule, Figure 16.

4. Experience

We taught Numerical analysis to the students of the Chemical technological
college in Šabac during school years 2006/07 and 2007/08. The students were
divided into two groups each year. During the previous school year, the students
have taken an exam in Mathematics, which not all had passed. The number of
students which have passed the exam, as well as their grade average, and the
number of student which have failed, is shown in Table 3. The grades range from
5 (fail), 6 (worst) to 10 (best).

Group, School year Passed / Grade average Failed
First, 2006/07 13 (59%) / 7.77 8 (41%)

Second, 2006/07 21 (52%) / 7.76 19 (48%)
First, 2007/08 18 (54%) / 7.89 15 (46%)

Second, 2007/08 38 (56%) / 7.92 29 (44%)

Table 3.

Based on this data one can conclude that the two groups were well balanced,
with regard to students’ proficiency.

The topic on numerical integration was based on the definition of the definite
integral. Special attention was paid to the Riemann sums and the limit of Riemann
sums. Our intention was to show that the Riemann sums should be thought of as
the approximate value of the definite integral, and to demonstrate the behavior of
the integration error.

Classes for the first group of students were based on the materials from the
book [2]. Calcuation of the Riemann sums with random partitioning of the in-
tegration interval was repeated multiple times, and supported with the graphical
representation. Left, right and middle Riemann sums were considered, as they
serve as the basis for quadrature formulas. Various integrands were shown, with
different domains of integration and different numbers of points in the partitions.
The Trapezoid rule and Simpson’s rule were also shown together with their graph-
ical representation, first for simple integrands and then for more complex ones. It
is important to point out that the graphs generated for Simpson’s rule were very
useful in class, and that they are not easily drawn without software.
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Classes for the second group of students covered the same topics, but they were
taught in a conventional way, using chalk and blackboard. The graphs were the
same as for the first group, but they were drawn by hand. The classical teaching
method was employed, meaning that the lectures followed the textbooks and the
numerical examples were previously prepared. Numerical results were presented
to the students, with no calculations actually performed in class. The parameters
could not be varied. The drawings used were just sketches, and did not always
accurately represent the chosen data. The sketches were not always aesthetically
satisfactory, regardless of our effort. For example, we could only show one Riemann
sum with previously chosen partition and a pre-calculated result.

After the material has been explained, a test was conducted in both groups,
which contained six questions:

1. Write the definition of definite integral. (20 points)

2. Write the definition of Riemann sum for
∫ b

a
f (x) dx. (20 points)

3. Write formula for left endpoint approximation of
∫ b

a
f (x) dx. (15 points)

4. Illustrate Composite Trapezoidal Rule for
∫ b

a
f (x) dx. (15 points)

5. Illustrate simple Simpson’s Rule for
∫ b

a
f (x) dx. (15 points)

6. Write the remainder term for the composite Simpson’s rule for
∫ b

a
f (x) dx.

(15 points)
Table 4 shows point average by groups for generations of 2006/07 and 2007/08.

Table 5 shows the results from the test. It can be easily seen that the group which
experimented with a computer with Mathematica and GeoGebra and additional
programs, achieved better results.

Group 1 Group 2
Count Point average Count Point average

2006/07 21 59.52 40 51.38
2007/08 33 58.64 67 47.16

Sum 54 58.98 107 48.74
Table 4.

Group 1 Group 2
Count 54 107

Average 58.9815 48.7383
Standard deviation 22.7865 21.8603

Minimum 15 15
Maximum 100 100

Confidence interval [52.7619, 65.201] [44.5485, 52.9282]
Table 5. Summary statistics

We use a t-test to compare the means of the two groups of students. It al-
so constructs confidence intervals or bounds for each mean. Since the computed
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t = 2.76744 and p-value (p = 0.00632) is less than 0.05, we can reject the null
hypothesis (the difference between the two means equals 0.0) in favor of the al-
ternative (the difference does not equal 0.0), i.e., there is a statistically significant
difference between the means of the two samples at the 95, 0% confidence level.

5. Conclusion

The advantages introduced by a computer are not only in quicker calculation
and drawing. The computer does all the tedious work, which leaves the teacher
and the pupils with enough time to discuss the problem, try out multiple ideas
and approaches to solving, and, finally, compare and analyze them. The method of
solving a problem is as important as its solution. Use of a computer is particularly
important when working with pupils who have difficulties understanding all the
aspects of solving a mathematical problem. They are freed from uninspiring and
time-consuming solving by hand, so they have more time to learn the important
points.

Starting from the problem of determining the area under a curve and using the
Riemann sums we defined the definite integral. GeoGebra and Mathematica applets
were used for visualisation. Algebraic approach was also used, as we calculated
intermediate values and the final values.

Our goal was to demonstrate how numerical integration formulae can be de-
rived from the Riemann sums. It is essential for students to understand and master
the concept of definite integral defined by limit of Riemann sums. Numerical in-
tegration formulae then follow as a special case of Riemann sums and their linear
combinations.

Testing results show that the described method of derivation of numerical
integration formulae has a positive impact on the students’ knowledge and skills.
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