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THE CHEMICAL FORMULA CnH2n+2

AND ITS MATHEMATICAL BACKGROUND

Ivan Gutman

Abstract. Already in the elementary school, on the chemistry classes, students
are told that the general formula of alkanes is CnH2n+2. No proof of this claim is
offered, either then or at any higher level. We now show how this formula can be
proven in a mathematically satisfactory manner. To do this we have to establish a
number of elementary properties of the mathematical objects called trees.
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1. Introduction

It is usually believed that chemistry is a science in which no knowledge of
mathematics and no mathematical skills are needed, and that mathematics is a
science in which no knowledge of chemistry and no chemical skills are needed. As a
consequence, students talented for mathematics use to ignore and despise chemistry
(“the stinky science”) whereas students interested in chemistry are usually recruited
among those for whom mathematics is “to hard to be understood”.

The author of this article does not want to claim that there is a lot of interesting
mathematics in chemistry and that students who love mathematics should focus
their attention to chemical matters. Yet, there exist mathematically non-trivial
themes in chemistry. One of these, chosen to be suitable for secondary-school
students, is outlined in the present article.

2. The alkane formula

The simplest organic chemical compounds are the so-called alkanes (in older
times also called paraffins). The chemical formulas of the eight smallest alkanes
are found in Fig. 1.

Alkanes are “hydrocarbons” which means that their molecules consist only of
carbon and hydrogen atoms. Alkanes are “saturated hydrocarbons” which means
that the number of hydrogen atoms (for a given number of carbon atoms) is maxi-
mum possible. Alkanes are “acyclic”, which means that their molecules contain no
cycles.

In chemistry it is known that the general formula of alkanes is CnH2n+2, where,
of course, n is a positive integer. This formula has to be understood as follows:
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Fig. 1. The structural formulas of all alkanes with n = 1, 2, 3, 4, 5 carbon atoms. Note
that for n = 4 there are two such alkanes (two isomers), whereas for n = 5 the number
of possible isomers is already three. The number of isomers rapidly increases with n,
as seen from Table 1.

Whenever in a molecule of an alkane there are n carbon atoms, then in this molecule
there are exactly 2n+2 hydrogen atoms. There are very many different alkanes with
a given number n of carbon atoms (see below), but in all such molecules the number
of hydrogen atoms is 2n + 2. This “all” gives to the formula CnH2n+2 a certain
mathematical flavor.

Namely, a sceptical student may ask: How we know that all alkanes with n
carbon atoms contain 2n+2 hydrogen atoms? Wouldn’t it be possible that some of
the zillion possible alkanes possesses more than 2n+2 or less than 2n+2 hydrogen
atoms?

If someone wants to embarrass his chemistry teacher, he may ask him this
question. It is unlikely that the teacher will be able of offer a satisfactory answer.
In the best case (typical for chemists) he will provide a number of examples, each
consistent with the CnH2n+2 formula.

Now, the problem with alkanes is that for a given value of n there exist very
many isomers – various arrangements of n carbon and 2n + 2 hydrogen atoms.
For n = 1, n = 2, and n = 3, these arrangements are unique, as shown in Fig. 1.
However, already for n = 4 there exists two distinct isomers, and for n = 5 three
isomers. (Ask your chemistry teacher for the names of these compounds; this he
will know.)

For n > 5 the number of isomeric alkanes rapidly increases, as seen from the
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following table:

n NI(n) n NI(n) n NI(n)

1 1 11 159 21 910 726
2 1 12 355 22 2 278 658
3 1 13 802 23 5 731 580
4 2 14 1 858 24 14 490 245
5 3 15 4 347 25 36 797 588
6 5 16 10 359 26 93 839 412
7 9 17 24 894 27 240 215 803
8 18 18 60 523 28 617 105 614
9 35 19 148 284 29 1 590 507 121

10 75 20 366 319 30 4 111 846 763

Table 1. The number NI(n) of distinct structural isomers of the CnH2n+2 alkanes. In
reality the number of isomers is still greater because of the so-called stereoisomerism.

Students who are curious, may try to check the above numbers for n = 6 and,
perhaps, n = 7 and n = 8, but then should stop. Counting the number of isomeric
alkanes is a very difficult mathematical problem, requiring the usage of advanced
combinatorial techniques, that even university students do not master. Details of
the history of this problem are found in the last section of the present article.

3. Graphs and trees

In this article we cannot give a full account of Graph Theory, a part of modern
mathematics. Interested students are referred to some of the numerous existing
textbooks (see, for example, [1–4]).

In nutshell, a graph is an object consisting of two sorts of elements, called
vertices and edges. Graphs are usually (but not necessarily) depicted as diagrams
in which the vertices are represented by small circles or big dots, and the edges by
lines connecting some pairs of vertices. It is assumed that the number of vertices
is finite, and that the lines pertaining to the edges are not directed.

In Fig. 2 is depicted a graph with 8 vertices and 9 edges.
The graph shown in Fig. 2 is cyclic, because it possesses cyclic arrangements

of vertices. In particular, it possesses a five-membered cycle (4, 5, 6, 7, 8, 4) , a four-
membered cycle (4, 5, 6, 7, 4) and a three-membered cycle (4, 7, 8, 4). This graph is
connected, because it is possible to go (via the edges) from any vertex to any other
vertex. The graph shown in Fig. 3 is also cyclic, but not connected. The graphs
shown in Fig. 4 are acyclic and connected.

Definition 1. A connected acyclic graph is called a tree.

In fact, in Fig. 4 are depicted all trees with 4, 5, and 6 vertices.
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Fig. 2. A graph with 8 vertices and 9 edges. Fig. 3. A graph that is not connected.

This graph is cyclic and connected.

Fig. 4. Connected acyclic graphs with 4, 5, and 6 vertices. Such graphs are called trees.

The reason why we have introduced the concepts of graph and tree is because
there is an obvious analogy between the structural formulas used in chemistry and
graphs. In particular, to each alkane one can associate a tree, as illustrated in
Fig. 5.

The way in which an alkane formula (from Fig. 1) is related to a tree (from
Fig. 5) should be self-evident: every symbol for an atom (carbon or hydrogen) is
replaced by a vertex; every symbol for a chemical bond is replaced by an edge.
Then, in agreement with Definition 1, the graph representation of any alkane will
necessarily be a tree. Such a tree is referred to as the molecular graph of the
respective alkane.

This analogy between structural formulas and graphs has far-reaching con-
sequences and is the basis of the so-called Chemical Graph Theory, a discipline
of contemporary Mathematical Chemistry. Interested students should consult the
textbooks [5–7].
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Fig. 5. Trees that in an obvious manner correspond to the structural formulas of
alkanes, depicted in Fig. 1.

4. Some elementary properties of trees

In this section we prove three elementary properties of trees, which are neces-
sary for deducing the formula CnH2n+2.

We start with another definition.

Definition 2. Let G be a graph and v its vertex. The number of first
neighbors of the vertex v, that is, the number of vertices connected to v through
an edge, is the degree of the vertex v, and is denoted by deg(v).

For instance, the vertices 1, 2, 3, 4, 5, 6, 7, and 8 of the graph from Fig. 2 have
degrees 1, 1, 1, 6, 2, 2, 3, and 2, respectively. The trees shown in Fig. 5 have only
vertices of degree 1 and of degree 4.

Theorem 1. Any tree with at least two vertices has a vertex of degree one.

Proof. First note that a tree with at least two vertices, since it is connected,
cannot possess vertices of degree zero. Consequently, all vertices of a tree are either
of degree one or of degree greater than one.

Let T be any tree. Choose in it any vertex, say v1. If v1 has degree one, The-
orem 1 is satisfied. Therefore we need to consider only the case when deg(v1) > 1.

If v1 has degree different than one, then deg(v1) ≥ 2. Thus v1 has at least
two neighbors, say v0 and v2. If v2 is of degree one, then Theorem 1 is satisfied.
Therefore we need to consider only the case when deg(v2) > 1. Then v2 has at
least two neighbors, of which one is v1 and another is, say, v3. The vertex v3 must
be different from v0, since in the opposite case T would contain a three-membered
cycle.
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If v3 is of degree one, then Theorem 1 is satisfied. Therefore we need to consider
only the case when deg(v3) > 1. Then v3 has at least two neighbors, of which one
is v2 and another is, say, v4. The vertex v4 must be different from v0 and v1, since
in the opposite case T would contain a four- or a three-membered cycle.

The above reasoning must stop at a certain point, because T has a finite
number of vertices. This will happen when a vertex is encountered that has degree
one.

Theorem 2. Any tree with p vertices has p− 1 edges.

Proof. We prove Theorem 2 by induction on the number p of vertices. The
readers can check for themselves that for p = 1, 2, 3, the (unique) tree with p vertices
has, respectively, 0, 1, and 2 edges. The validity of Theorem 2 can also be checked
on the trees with 4, 5, and 6 vertices, depicted in Fig. 4.

Assume now that any tree with p0 vertices, p0 ≥ 1, has p0− 1 edges. Let T be
a tree with p0 + 1 vertices.

According to Theorem 1, T must have a vertex v of degree one. If this vertex v
is deleted from T , we obtain a tree T0 with p0 vertices. According to the induction
hypothesis, T0 has p0 − 1 edges. Since the vertex v was connected to the tree
T0 by a single edge, the tree T must have exactly one edge more than T0, i. e.,
(p0 − 1) + 1 = p0 edges.

This completes the proof by induction.

Theorem 3. If a tree T has vertices v1, v2, . . . , vp, then

(1) deg(v1) + deg(v2) + · · ·+ deg(vp) = 2(p− 1) .

Proof. As it often happens in mathematics, it is easier to prove a somewhat
more general result: If G is any graph with q edges, and v1, v2, . . . , vp are its
vertices, then

(2) deg(v1) + deg(v2) + · · ·+ deg(vp) = 2q .

The degree of a vertex is just the number of edges that end at this vertex. In view
of this, the left-hand side of (2) counts all edges of G. Because each edge ends at
two vertices, each edge of G is counted two times, resulting in the right-hand side
of (2).

Equation (1) is just a special case of (2), in which Theorem 2 has been taken
into account.

5. Proving formula CnH2n+2

With the preparation done in the previous two sections it is now easy to prove
the alkane formula.
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Let the alkane considered possess n carbon atoms and h hydrogen atoms. The
molecular graph of such an alkane is a tree with n + h vertices, and thus (by
Theorem 2) with n + h− 1 edges.

For chemical reasons the degrees of the vertices representing carbon atoms
are equal to four, and the degrees of the vertices representing hydrogen atoms are
equal to one. (Ask your chemistry teacher to explain you why this is so; this has
something to do with the valency of carbon and hydrogen.)

Since there are n vertices of degree 4, and h vertices of degree one, the sum on
the left-hand side of (1) is equal to 4× n + 1× h, which results in:

4n + h = 2(n + h− 1) .

By simple rearrangements (which the reader should do himself), from this equality
follows

h = 2n + 2

as required by the CnH2n+2 formula.

6. History of alkane formula and alkane enumeration

The proof of the general validity of the formula CnH2n+2 was first communi-
cated in 1875 by the British mathematician William Clifford (see Fig. 6). In fact,
Clifford obtained much more general results, of which the alkane formula is just a
simple special case.

Fig. 6. William Clifford (1845–1879) Fig. 7. Arthur Cayley (1821–1895)

Clifford’s main contributions to mathematics fall in the area of geometry and
algebra. He was a pioneer in the study of non-Euclidean geometry. His name is
remembered in Clifford-Klein spaces, Clifford algebras, Clifford numbers, etc.

The great British mathematician Arthur Cayley (see Fig. 7) was the first who
recognized the relation between the structural formulas in organic chemistry and
the graphs.

Cayley is one of the most prolific mathematicians of all times. His main con-
tributions are in the field of matrix theory, linear algebra, and group theory. He is
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also one of the pioneers of graph theory. By the way, Cayley proposed the name
“tree”.

In 1874 Cayley published a paper entitled “On the Mathematical Theory of
Isomers”, which represents the first serious chemical application of graph theory.
In this paper he introduced the concept of molecular graph. Cayley’s intention
was to solve the problem of alkane isomers, that is to find a method by which the
number NI(n) of distinct isomers of formula CnH2n+2 could be determined. He,
however, did not succeed.

In the next 50 years the enumeration of
alkane isomers remained an open problem. Nu-
merous chemists and mathematicians tried to
solve it, but without success. Eventually, in
1932 two American chemists Henry Henze and
Richard Blair found a recursive procedure by
which the numbers NI(n) from Table 1 could
be calculated.

The general solution of the enumeration
problem was obtained in 1935 by the Hungarian
mathematician George Pólya (see Fig. 8).

Fig. 8. George Pólya (1887–1985)

By means of the method discovered by Pólya (which nowadays is called Pólya
theory and represents one of the cornerstones of modern combinatorics) it is possible
to count the number of arbitrary objects, provided their symmetry is defined.

Returning to alkanes, it is worth noting that in 1932 there were no computers,
and therefore Henze and Blair had to do their calculations by hand. At a certain
point they made a numerical error, and therefore for larger values of n their NI(n)-
values were incorrect. The correct values were obtained only in the 1980s, when
the Henze-Blair procedure was repeated by using a (super)computer. This means
that it took a little more than a century to enumerate the alkane isomers.

The readers of this article may be pleased to know that the number of possible
isomers of C50H102 is

NI(50) = 1 117 743 651 746 953 270

and of C80H162,

NI(80) = 10 564 476 906 946 675 106 953 415 600 016.
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