CONVEXITY OF THE INVERSE FUNCTION

Mila Mršević

Abstract. This note answers the following question: Having an invertible convex real valued function $f: A \to \mathbf{R}$, what can be said about convexity of f^{-1} ? ZDM Subject Classification: I20, I40; AMS Subject Classification: 00A35.

 $Key\ words\ and\ phrases:$ Convex function; inverse function; continuity; first derivative; second derivative.

The intention of this author is to sketch a research theme for students of special mathematical schools (for example, mathematical gymnasia). The conditions under which two functions f and f^{-1} are convex (concave) in the same time are not found in the current books on calculus. Thus, a teacher should let her/his students get acquainted with all involved concepts leaving the question of these conditions open.

It is well known that if an invertible function f is increasing (decreasing), its inverse is of the same type. The question arises: what can be said about convexity of f and f^{-1} ?

Probably we would think first of the exponential function $y = e^x$ and the function $y = x^2$ and conclude that convexity of one of the functions f or f^{-1} implies concavity of the other. But examples of the functions such that f and f^{-1} are both convex (concave) exist in abundance, one of them being $y = \frac{1}{x}$ which is inverse to itself! So, the next question is: Is there any rule?

Recall that a real function f defined on an interval $A \subset \mathbf{R}$ is convex on A if for each $x_1, x_2 \in A$ and $\alpha_1, \alpha_2 \in [0, 1]$ such that $\alpha_1 + \alpha_2 = 1$

(1)
$$f(\alpha_1 x_1 + \alpha_2 x_2) \leq \alpha_1 f(x_1) + \alpha_2 f(x_2)$$

holds.

If in (1) the inequality \langle (respectively \geq , \rangle) takes place, the function is strictly convex (respectively concave, strictly concave).

The above convexity condition is equivalent to (see [1]): For every three points $x_1, x, x_2 \in A$ such that $x_1 < x < x_2$

(2)
$$\frac{f(x) - f(x_1)}{x - x_1} \leqslant \frac{f(x_2) - f(x)}{x_2 - x}$$

is true.

A well-known fact is that a two times differentiable function f on an interval is convex (concave) if and only if its second derivative f'' is nonnegative (nonpositive). (See [1] or [3].) Thus we easily prove the next statement. PROPOSITION 1. Let $f: (a, b) \xrightarrow{\text{onto}} (c, d) \subset \mathbf{R}$ be two times differentiable function, $f^{-1}: (c, d) \to \mathbf{R}$ be its inverse, and let $f'(x) \neq 0$.

(1) If f and f^{-1} are decreasing functions, convexity of one of them implies convexity of the other.

(2) If f and f^{-1} are increasing functions, convexity of one of them implies concavity of the other.

Proof. For $x = f^{-1}(y)$ the following holds: $(f^{-1})'(y) = \frac{1}{f'(x)}$ and

$$(f^{-1})''(y) = \left(\frac{1}{f'(x)}\right)'(y) = \frac{d}{dx}\left(\frac{1}{f'(x)}\right)x'(y) = \frac{-f''(x)}{f'(x)^2}x'(y) = \frac{-f''(x)}{(f'(x))^2} \cdot \frac{1}{f'(x)}$$

where $x = f^{-1}(y)$.

(1) If f is a decreasing function then f'(x) < 0, so $(f^{-1})''(y)$ and f''(x) have the same sign.

(2) If f is an increasing function then f'(x) > 0, hence $(f^{-1})''(y)$ and f''(x) have opposite signs.

To prove the general case we use the following statement concerning continuity of convex functions (see [2, Chapter 1, Section 4.3], or [4, Tvrdjenje 2.3]).

- THEOREM 1. Let $f: (a, b) \to \mathbf{R}$ be a convex function. Then
- 1. f is continuous on (a, b);
- 2. at each point $x \in (a, b)$ there exist the left-hand derivative $f'_{-}(x)$ and the righthand derivative $f'_{+}(x)$;
- 3. the set of points in which f is not differentiable is at most countable.

Proof. First we prove 2. Then, being continuous from the left and the right at each point x, the function f is continuous on (a, b).

Let $x, t \in (a, b), x \neq t$. Denote by $\nu(x; t) = \frac{f(x) - f(t)}{x - t}$ the slope of the line segment passing through the points (x, f(x)), and (t, f(t)). Clearly, $\nu(x; t) = \nu(t; x)$. The condition (2) can be rewritten as

(2')
$$\nu(x;x_1) \leqslant \nu(x;x_2).$$

Note that $\frac{f(x) - f(x_1)}{x - x_1} \leq \frac{f(x_2) - f(x)}{x_2 - x}$ is equivalent to

$$\frac{f(x) - f(x_1)}{x - x_1} \leq \frac{(f(x) - f(x_1)) + (f(x_2) - f(x))}{(x - x_1) + (x_2 - x)} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

and

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{(f(x) - f(x_1)) + (f(x_2) - f(x))}{(x - x_1) + (x_2 - x)} \leqslant \frac{f(x_2) - f(x)}{x_2 - x}.$$

By renumbering the points we get $\nu(x;t_1) \leq \nu(x;t_2)$ for $x < t_1 < t_2$ and $\nu(x;t_1) \leq \nu(x;t_2)$ for $t_1 < t_2 < x$. Thus, for a fixed $x \in (a,b)$ the slope function

 $\nu(x;t) \equiv \varphi(t)$ is an increasing function. There exist $\lim_{t\to x^-} \nu(x;t) = f'_-(x)$ and $\lim_{t\to x^+} \nu(x;t) = f'_+(x)$. Moreover, $f'_-(x) \leq f'_+(x)$ by (2').

3. The statement is proved in the standard way using the fact that the set ${\bf Q}$ of rational numbers is dense in ${\bf R}.$ \blacksquare

REMARK. That a convex function $f: [a, b] \to \mathbf{R}$ need not be continuous at the end points can be seen from the following example. Let $f(x) = x^2$ for -1 < x < 1, and f(x) = 2 for $x \in \{-1, 1\}$.

PROPOSITION 2. Let $f: (a, b) \xrightarrow{\text{onto}} (c, d) \subset \mathbf{R}$ be a convex function and let $f^{-1}: (c, d) \to \mathbf{R}$ be its inverse.

- (1) If f is increasing then f^{-1} is increasing and concave.
- (2) If f is decreasing then f^{-1} is decreasing and convex.

Proof. Being continuous and invertible on (a, b) the function f is strictly monotone (as well as its inverse) and convex. Let $c < y_1 < y < y_2 < d$ and let x, x_1 and x_2 be the unique points from (a, b) for which f(x) = y, $f(x_i) = y_i$, i = 1, 2 hold.

(1) If f is increasing then $x_1 < x < x_2$ and from $\frac{y - y_1}{x - x_1} \leq \frac{y_2 - y}{x_2 - x}$ it follows that $\frac{x - x_1}{y - y_1} \geq \frac{x_2 - x}{y_2 - y}$. Hence f^{-1} is concave.

(2) If f is decreasing then $x_1 > x > x_2$, so from $\frac{y-y_2}{x-x_2} \leqslant \frac{y_1-y}{x_1-x}$ it follows $\frac{y_2-y}{x-x_2} \geqslant \frac{y-y_1}{x_1-x} (> 0)$, hence $\frac{x-x_2}{y_2-y} \leqslant \frac{x_1-x}{y-y_1}$, i.e. $\frac{x_2-x}{y_2-y} \geqslant \frac{x-x_1}{y-y_1}$ and f^{-1} is a convex function.

PROPOSITION 3. Let $f: [a, b] \xrightarrow{\text{onto}} A \subset \mathbf{R}$ be a convex and invertible function and let f^{-1} be its inverse.

- (1) If f is increasing then f^{-1} is concave on each interval $I \subset A$.
- (2) If f is decreasing then f^{-1} is convex on each interval $I \subset A$.

Proof. Let $f_1 = f|(a, b)$. The restriction f_1 is monotone on (a, b). Let $c = \lim_{x \to a+} f(x)$ and $d = \lim_{x \to b-} f(x)$. It must be $f(a) \ge c$ and $f(b) \ge d$.

If f is continuous at a or b, then for its inverse function on the interval f([a, b)), respectively f((a, b]), Proposition 2 holds.

If $f(a), f(b) > \max\{c, d\}$, then for f^{-1} Proposition 2 holds on the interval f(a, b).

(1) If f is increasing on (a, b), and f(a) = d, then f^{-1} is concave on (c, d].

(2) Dually, if f is decreasing on (a, b), and f(b) = c, then f^{-1} is convex on (d, c].

REFERENCES

- 1. D. Adnađević, Z. Kadelburg, *Matematička analiza 1* (8. izdanje), Matematički fakultet, Beograd, 2008.
- 2. N. Bourbaki, Fonctions d'une variable réelle, Hermann, Paris. (Н. Бурбаки, Функции действительного переменного, Наука, Москва, 1965.)
- 3. M. Marjanović, Matematička analiza I, Naučna knjiga, Beograd, 1979.
- 4. S. Vrećica, Konveksna analiza (2. izdanje), Matematički fakultet, Beograd, 1999.

Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Beograd, Serbia. *E-mail*: mrsevic@matf.bg.ac.yu